Hardy’s inequalities in finite dimensional Hilbert spaces
HTML articles powered by AMS MathViewer
- by Dimitar K. Dimitrov, Ivan Gadjev, Geno Nikolov and Rumen Uluchev PDF
- Proc. Amer. Math. Soc. 149 (2021), 2515-2529 Request permission
Abstract:
We study the behaviour of the smallest possible constants $d_n$ and $c_n$ in Hardy’s inequalities \begin{equation*} \sum _{k=1}^{n}\Big (\frac {1}{k}\sum _{j=1}^{k}a_j\Big )^2\leq d_n \sum _{k=1}^{n}a_k^2, \qquad (a_1,\ldots ,a_n) \in \mathbb {R}^n \end{equation*} and \begin{equation*} \int _{0}^{\infty }\Bigg (\frac {1}{x}\int _{0}^{x}f(t) dt\Bigg )^2 dx \leq c_n \int _{0}^{\infty }f^2(x) dx,\qquad f\in \mathcal {H}_n, \end{equation*} for the finite dimensional spaces $\mathbb {R} ^n$ and $\mathcal {H}_n\colonequals \{f : \int _0^x f(t) dt =e^{-x/2} p(x)\ :\ p\in \mathcal {P}_n, p(0)=0\}$, where $\mathcal {P}_n$ is the set of real-valued algebraic polynomials of degree not exceeding $n$. The constants $d_n$ and $c_n$ are identified to be expressed in terms of the smallest zeros of the so-called continuous dual Hahn polynomials and the two-sided estimates for $d_n$ and $c_n$ of the form \begin{equation*} 4-\frac {c}{\ln n}< d_n, c_n<4-\frac {c}{\ln ^2 n} ,\qquad c>0 \end{equation*} are established.References
- G. H. Hardy, Notes on some points in the integral calculus, LI. On Hilbert’s double-series theorem, and some connected theorems concerning the convergence of infinite series and integrals, Messenger Math. 48 (1919), 107–112.
- G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), no. 3-4, 314–317. MR 1544414, DOI 10.1007/BF01199965
- G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integral, Messenger Math. 54 (1925), 150–156.
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR 944909
- Mourad E. H. Ismail, The variation of zeros of certain orthogonal polynomials, Adv. in Appl. Math. 8 (1987), no. 1, 111–118. MR 876957, DOI 10.1016/0196-8858(87)90009-1
- Mourad E. H. Ismail, Monotonicity of zeros of orthogonal polynomials, $q$-series and partitions (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 18, Springer, New York, 1989, pp. 177–190. MR 1019851, DOI 10.1007/978-1-4684-0637-5_{1}4
- Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey. MR 2191786, DOI 10.1017/CBO9781107325982
- R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Delft University of Technology, 1998, http://homepage.tudelft.nl/11r49/documents/as98.pdf.
- Alois Kufner, Lars-Erik Persson, and Natasha Samko, Weighted inequalities of Hardy type, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. MR 3676556, DOI 10.1142/10052
- Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly 113 (2006), no. 8, 715–732. MR 2256532, DOI 10.2307/27642033
- Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The Hardy inequality, Vydavatelský Servis, Plzeň, 2007. About its history and some related results. MR 2351524
- E. Landau, I. Schur, and G. H. Hardy, A Note on a Theorem Concerning Series of Positive Terms: Extract from a Letter, J. London Math. Soc. 1 (1926), no. 1, 38–39. MR 1575105, DOI 10.1112/jlms/s1-1.1.38
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
Additional Information
- Dimitar K. Dimitrov
- Affiliation: Departamento de Matemática, IBILCE, Universidade Estadual Paulista, 15054-000 São José do Rio Preto, SP, Brazil
- MR Author ID: 308699
- Email: d_k_dimitrov@yahoo.com
- Ivan Gadjev
- Affiliation: Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
- MR Author ID: 1090555
- ORCID: 0000-0002-4444-9921
- Email: gadjev@fmi.uni-sofia.bg
- Geno Nikolov
- Affiliation: Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
- MR Author ID: 131505
- ORCID: 0000-0001-5608-2488
- Email: geno@fmi.uni-sofia.bg
- Rumen Uluchev
- Affiliation: Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
- MR Author ID: 175915
- ORCID: 0000-0002-9122-7088
- Email: rumenu@fmi.uni-sofia.bg
- Received by editor(s): July 20, 2020
- Received by editor(s) in revised form: September 14, 2020, and September 14, 2020
- Published electronically: March 26, 2021
- Additional Notes: Research supported by the Brazilian Science Foundations FAPESP under Grants 2016/09906-0 and 2016/10357-1 and CNPq under Grant 306136/2017-1 and the Bulgarian National Research Fund through Contract DN 02/14.
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2515-2529
- MSC (2020): Primary 26D10, 26D15; Secondary 33C45, 15A42
- DOI: https://doi.org/10.1090/proc/15467
- MathSciNet review: 4246802