Quantitative structure of stable sets in arbitrary finite groups
HTML articles powered by AMS MathViewer
- by Gabriel Conant
- Proc. Amer. Math. Soc. 149 (2021), 4015-4028
- DOI: https://doi.org/10.1090/proc/15479
- Published electronically: June 4, 2021
- PDF | Request permission
Abstract:
We show that a $k$-stable set in a finite group can be approximated, up to given error $\epsilon >0$, by left cosets of a subgroup of index $\epsilon ^{\text {-} O_k(1)}$. This improves the bound in a similar result of Terry and Wolf on stable arithmetic regularity in finite abelian groups, and leads to a quantitative account of work of the author, Pillay, and Terry on stable sets in arbitrary finite groups. We also prove an analogous result for finite stable sets of small tripling in arbitrary groups, which provides a quantitative version of recent work by Martin-Pizarro, Palacín, and Wolf. Our proofs use results on VC-dimension, and a finitization of model-theoretic techniques from stable group theory.References
- Noga Alon, Eldar Fischer, and Ilan Newman, Efficient testing of bipartite graphs for forbidden induced subgraphs, SIAM J. Comput. 37 (2007), no. 3, 959–976. MR 2341924, DOI 10.1137/050627915
- Noga Alon, Jacob Fox, and Yufei Zhao, Efficient arithmetic regularity and removal lemmas for induced bipartite patterns, Discrete Anal. , posted on (2019), Paper No. 3, 14. MR 3943117, DOI 10.19086/da
- Artem Chernikov and Sergei Starchenko, Definable regularity lemmas for NIP hypergraphs, arXiv:1607.07701, 2016.
- Artem Chernikov and Sergei Starchenko, Regularity lemma for distal structures, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 10, 2437–2466. MR 3852184, DOI 10.4171/JEMS/816
- Gabriel Conant, On finite sets of small tripling or small alternation in arbitrary groups, Combin. Probab. Comput. 29 (2020), no. 6, 807–829. MR 4173133, DOI 10.1017/s0963548320000176
- Gabriel Conant, Stability in a group, accepted to Groups Geom. Dyn., arXiv:1902.07194.
- G. Conant, A. Pillay, and C. Terry, A group version of stable regularity, Math. Proc. Cambridge Philos. Soc. 168 (2020), no. 2, 405–413. MR 4064112, DOI 10.1017/s0305004118000798
- G. Conant, A. Pillay, and C. Terry, Structure and regularity for subsets of groups with finite VC-dimension, arXiv:1802.04246, to appear in J. Eur. Math. Soc.
- P. Erdős and M. Makkai, Some remarks on set theory. X, Studia Sci. Math. Hungar. 1 (1966), 157–159. MR 209167
- Jacob Fox and László Miklós Lovász, A tight lower bound for Szemerédi’s regularity lemma, Combinatorica 37 (2017), no. 5, 911–951. MR 3737374, DOI 10.1007/s00493-016-3274-4
- W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal. 7 (1997), no. 2, 322–337. MR 1445389, DOI 10.1007/PL00001621
- B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal. 15 (2005), no. 2, 340–376. MR 2153903, DOI 10.1007/s00039-005-0509-8
- David Haussler, Sphere packing numbers for subsets of the Boolean $n$-cube with bounded Vapnik-Chervonenkis dimension, J. Combin. Theory Ser. A 69 (1995), no. 2, 217–232. MR 1313896, DOI 10.1016/0097-3165(95)90052-7
- Wilfrid Hodges, Encoding orders and trees in binary relations, Mathematika 28 (1981), no. 1, 67–71. MR 632796, DOI 10.1112/S0025579300015357
- Kaave Hosseini, Shachar Lovett, Guy Moshkovitz, and Asaf Shapira, An improved lower bound for arithmetic regularity, Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 2, 193–197. MR 3530502, DOI 10.1017/S030500411600013X
- Ehud Hrushovski, Ya’acov Peterzil, and Anand Pillay, Groups, measures, and the NIP, J. Amer. Math. Soc. 21 (2008), no. 2, 563–596. MR 2373360, DOI 10.1090/S0894-0347-07-00558-9
- Ehud Hrushovski and Anand Pillay, Groups definable in local fields and pseudo-finite fields, Israel J. Math. 85 (1994), no. 1-3, 203–262. MR 1264346, DOI 10.1007/BF02758643
- János Komlós, János Pach, and Gerhard Woeginger, Almost tight bounds for $\epsilon$-nets, Discrete Comput. Geom. 7 (1992), no. 2, 163–173. MR 1139078, DOI 10.1007/BF02187833
- J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory, Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993) Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295–352. MR 1395865
- Vsevolod F. Lev, Tomasz Łuczak, and Tomasz Schoen, Sum-free sets in abelian groups, Israel J. Math. 125 (2001), 347–367. MR 1853817, DOI 10.1007/BF02773386
- László Lovász and Balázs Szegedy, Regularity partitions and the topology of graphons, An irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., Budapest, 2010, pp. 415–446. MR 2815610, DOI 10.1007/978-3-642-14444-8_{1}2
- M. Malliaris and S. Shelah, Regularity lemmas for stable graphs, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1551–1585. MR 3145742, DOI 10.1090/S0002-9947-2013-05820-5
- Amador Martin-Pizarro, Daniel Palacín, and Julia Wolf, A model-theoretic note on the Freiman-Ruzsa theorem, arXiv:1912.02883, 2019.
- Imre Z. Ruzsa, Towards a noncommutative Plünnecke-type inequality, An irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., Budapest, 2010, pp. 591–605. MR 2815615, DOI 10.1007/978-3-642-14444-8_{1}7
- Tom Sanders, On the Bogolyubov-Ruzsa lemma, Anal. PDE 5 (2012), no. 3, 627–655. MR 2994508, DOI 10.2140/apde.2012.5.627
- Tom Sanders, The coset and stability rings, Online J. Anal. Comb. 15 (2020), Paper No. 1, 10. MR 4076442
- S. Shelah, Classification theory and the number of nonisomorphic models, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990. MR 1083551
- Olof Sisask, Convolutions of sets with bounded VC-dimension are uniformly continuous, arXiv:1802.02836, 2018.
- C. Terry and J. Wolf, Stable arithmetic regularity in the finite field model, Bull. Lond. Math. Soc. 51 (2019), no. 1, 70–88. MR 3919562, DOI 10.1112/blms.12211
- C. Terry and J. Wolf, Quantitative structure of stable sets in finite abelian groups, Trans. Amer. Math. Soc. 373 (2020), no. 6, 3885–3903. MR 4105513, DOI 10.1090/tran/8056
- V. N. Vapnik and A. Ja. Červonenkis, The uniform convergence of frequencies of the appearance of events to their probabilities, Teor. Verojatnost. i Primenen. 16 (1971), 264–279 (Russian, with English summary). MR 0288823
Bibliographic Information
- Gabriel Conant
- Affiliation: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, United Kingdom
- MR Author ID: 1130892
- Email: gconant@maths.cam.ac.uk
- Received by editor(s): May 4, 2020
- Received by editor(s) in revised form: January 5, 2021
- Published electronically: June 4, 2021
- Additional Notes: Partially supported by NSF grant DMS-1855503
- Communicated by: Heike Mildenberger
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4015-4028
- MSC (2020): Primary 03C45, 11B30, 20D60
- DOI: https://doi.org/10.1090/proc/15479
- MathSciNet review: 4291597