Linearly presented modules and bounds on the Castelnuovo-Mumford regularity of ideals
HTML articles powered by AMS MathViewer
- by Giulio Caviglia and Alessandro De Stefani
- Proc. Amer. Math. Soc. 150 (2022), 1397-1404
- DOI: https://doi.org/10.1090/proc/15902
- Published electronically: January 26, 2022
- PDF | Request permission
Abstract:
We estimate the Castelnuovo-Mumford regularity of ideals in a polynomial ring over a field by studying the regularity of certain modules generated in degree zero and with linear relations. In dimension one, this process gives a new type of upper bounds. By means of recursive techniques this also produces new upper bounds for ideals in any dimension.References
- Winfried Bruns, Aldo Conca, and Tim Römer, Koszul cycles, Combinatorial aspects of commutative algebra and algebraic geometry, Abel Symp., vol. 6, Springer, Berlin, 2011, pp. 17–33. MR 2810423, DOI 10.1007/978-3-642-19492-4_{2}
- M. Brodmann and T. Götsch, Bounds for the Castelnuovo-Mumford regularity, J. Commut. Algebra 1 (2009), no. 2, 197–225. MR 2504932, DOI 10.1216/JCA-2009-1-2-197
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Dave Bayer and David Mumford, What can be computed in algebraic geometry?, Computational algebraic geometry and commutative algebra (Cortona, 1991) Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1–48. MR 1253986
- David Bayer and Michael Stillman, On the complexity of computing syzygies, J. Symbolic Comput. 6 (1988), no. 2-3, 135–147. Computational aspects of commutative algebra. MR 988409, DOI 10.1016/S0747-7171(88)80039-7
- Giulio Caviglia and Alessandro De Stefani, The Eisenbud-Green-Harris conjecture for fast-growing degree sequences, arXiv:2007.15467, 2020.
- Marc Chardin, Amadou Lamine Fall, and Uwe Nagel, Bounds for the Castelnuovo-Mumford regularity of modules, Math. Z. 258 (2008), no. 1, 69–80. MR 2350034, DOI 10.1007/s00209-007-0157-9
- Giulio Caviglia and Diane Maclagan, Some cases of the Eisenbud-Green-Harris conjecture, Math. Res. Lett. 15 (2008), no. 3, 427–433. MR 2407220, DOI 10.4310/MRL.2008.v15.n3.a3
- Giulio Caviglia and Enrico Sbarra, Characteristic-free bounds for the Castelnuovo-Mumford regularity, Compos. Math. 141 (2005), no. 6, 1365–1373. MR 2188440, DOI 10.1112/S0010437X05001600
- David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, DOI 10.1016/0021-8693(84)90092-9
- David Eisenbud, Mark Green, and Joe Harris, Higher Castelnuovo theory, Astérisque 218 (1993), 187–202. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR 1265314
- David Eisenbud, Mark Green, and Joe Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 3, 295–324. MR 1376653, DOI 10.1090/S0273-0979-96-00666-0
- André Galligo, À propos du théorème de-préparation de Weierstrass, Fonctions de plusieurs variables complexes (Sém. François Norguet, 1970–1973; à la mémoire d’André Martineau), Lecture Notes in Math., Vol. 409, Springer, Berlin, 1974, pp. 543–579 (French). Thèse de 3ème cycle soutenue le 16 mai 1973 à l’Institut de Mathématique et Sciences Physiques de l’Université de Nice. MR 0402102
- André Galligo, Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, vii, 107–184 (French, with English summary). MR 539695
- M. Giusti, Some effectivity problems in polynomial ideal theory, EUROSAM 84 (Cambridge, 1984) Lecture Notes in Comput. Sci., vol. 174, Springer, Berlin, 1984, pp. 159–171. MR 779123, DOI 10.1007/BFb0032839
- Mark Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 76–86. MR 1023391, DOI 10.1007/BFb0085925
- Lê Tuân Hoa and Eero Hyry, Castelnuovo-Mumford regularity of canonical and deficiency modules, J. Algebra 305 (2006), no. 2, 877–900. MR 2266858, DOI 10.1016/j.jalgebra.2006.05.001
- Jee Koh, Ideals generated by quadrics exhibiting double exponential degrees, J. Algebra 200 (1998), no. 1, 225–245. MR 1603272, DOI 10.1006/jabr.1997.7225
- Ernst W. Mayr and Albert R. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. in Math. 46 (1982), no. 3, 305–329. MR 683204, DOI 10.1016/0001-8708(82)90048-2
Bibliographic Information
- Giulio Caviglia
- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
- MR Author ID: 773758
- ORCID: 0000-0003-4530-0157
- Email: gcavigli@purdue.edu
- Alessandro De Stefani
- Affiliation: Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
- MR Author ID: 1053917
- ORCID: 0000-0003-3094-956X
- Email: destefani@dima.unige.it
- Received by editor(s): April 23, 2021
- Published electronically: January 26, 2022
- Additional Notes: The work of the first author was partially supported by a grant from the Simons Foundation (41000748, G.C.)
- Communicated by: Claudia Polini
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1397-1404
- MSC (2020): Primary 13D02; Secondary 13A02, 13A15
- DOI: https://doi.org/10.1090/proc/15902
- MathSciNet review: 4375731