Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the existence of foliations by solutions to the exterior Dirichlet problem for the minimal surface equation
HTML articles powered by AMS MathViewer

by Ari Aiolfi, Daniel Bustos and Jaime Ripoll PDF
Proc. Amer. Math. Soc. 150 (2022), 3063-3073 Request permission

Abstract:

Given an exterior domain $\Omega$ with $C^{2,\alpha }$ boundary in $\mathbb {R}^{n}$, $n\geq 3$, we obtain a $1$-parameter family $u_{\gamma }\in C^{\infty }\left ( \Omega \right )$, $\left \vert \gamma \right \vert \leq \pi /2$, of solutions of the minimal surface equation such that, if $\left \vert \gamma \right \vert <\pi /2$, $u_{\gamma }\in C^{\infty }\left ( \Omega \right ) \cap C^{2,\alpha }\left ( \overline {\Omega }\right )$, $u_{\gamma }|_{\partial \Omega }=0$ with $\max _{\partial \Omega }\left \Vert \nabla u_{\gamma }\right \Vert =\tan \gamma$ and, if $\left \vert \gamma \right \vert =\pi /2$, the graph of $u_{\gamma }$ is contained in a $C^{1,1}$ manifold $M_{\gamma }\subset \overline {\Omega }\times \mathbb {R}$ with $\partial M_{\gamma }=\partial \Omega$. Each of these functions is bounded and asymptotic to a constant \[ c_{\gamma }=\lim _{\left \Vert x\right \Vert \rightarrow \infty }u_{\gamma }\left ( x\right ) . \] The mappings $\gamma \rightarrow u_{\gamma }\left ( x\right )$ (for fixed $x\in \Omega$) and $\gamma \rightarrow c_{\gamma }$ are strictly increasing and bounded. The graphs of these functions foliate the open subset of $\mathbb {R}^{n+1}$ \[ \left \{ \left ( x,z\right ) \in \Omega \times \mathbb {R}\text {, }-u_{\pi /2}\left ( x\right ) <z<u_{\pi /2}\left ( x\right ) \right \} . \] Moreover, if $\mathbb {R}^{n}\backslash \Omega$ satisfies the interior sphere condition of maximal radius $\rho$ and if $\partial \Omega$ is contained in a ball of minimal radius $\varrho$, then \[ \left [ 0,\sigma _{n}\rho \right ] \subset \left [ 0,c_{\pi /2}\right ] \subset \left [ 0,\sigma _{n}\varrho \right ] , \] where \[ \sigma _{n}=\int _{1}^{\infty }\frac {dt}{\sqrt {t^{2\left ( n-1\right ) }-1}}. \] One of the above inclusions is an equality if and only if $\rho =\varrho$, $\Omega$ is the exterior of a ball of radius $\rho$ and the solutions are radial.

These foliations were studied by E. Kuwert in [Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), pp. 445–451] and our result answers a natural question about the existence of such foliations which was not touched by Kuwert.

References
Similar Articles
Additional Information
  • Ari Aiolfi
  • Affiliation: Universidade Federal de Santa Maria, Departamento de Matemática, Santa Maria RS, Brazil
  • MR Author ID: 792583
  • Email: ari.aiolfi@ufsm.br
  • Daniel Bustos
  • Affiliation: Universidad Nacional Abierta y a Distancia and Universidad del Tolima, Escuela de Ciencias Básicas, Tecnología e Ingeniería Ibagué - Tolima, Colombia
  • MR Author ID: 1304949
  • ORCID: 0000-0002-4742-8755
  • Email: daniel.bustos@unad.edu.co
  • Jaime Ripoll
  • Affiliation: Universidade Federal do Rio Grande do Sul, Instituto de Matemática, Porto Alegre RS, Brazil
  • MR Author ID: 148575
  • Email: jaime.ripoll@ufrgs.br
  • Received by editor(s): March 8, 2021
  • Received by editor(s) in revised form: June 22, 2021, and September 6, 2021
  • Published electronically: March 24, 2022
  • Communicated by: Jiaping Wang
  • © Copyright 2022 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 150 (2022), 3063-3073
  • MSC (2020): Primary 53A10, 53C42, 49Q05, 49Q20
  • DOI: https://doi.org/10.1090/proc/15845
  • MathSciNet review: 4428889