## Stability of closedness of semi-algebraic sets under continuous semi-algebraic mappings

HTML articles powered by AMS MathViewer

- by Sĩ Tiệp Đinh, Zbigniew Jelonek and Tiến Sơn Phạm PDF
- Proc. Amer. Math. Soc.
**150**(2022), 3663-3673 Request permission

## Abstract:

Given a closed semi-algebraic set $X \subset \mathbb {R}^n$ and a continuous semi-algebraic mapping $G \colon X \to \mathbb {R}^m$, it will be shown that there exists an open dense semi-algebraic subset $\mathscr {U}$ of $L(\mathbb {R}^n, \mathbb {R}^m)$, the space of all linear mappings from $\mathbb {R}^n$ to $\mathbb {R}^m$, such that for all $F \in \mathscr {U}$, the image $(F + G)(X)$ is a closed (semi-algebraic) set in $\mathbb {R}^m$. To do this, we study the tangent cone at infinity $C_\infty X$ and the set $E_\infty X \subset C_\infty X$ of (unit) exceptional directions at infinity of $X$. Specifically we show that the set $E_\infty X$ is nowhere dense in $C_\infty X \cap \mathbb {S}^{n - 1}$.## References

- Alfred Auslender and Marc Teboulle,
*Asymptotic cones and functions in optimization and variational inequalities*, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR**1931309** - Riccardo Benedetti and Jean-Jacques Risler,
*Real algebraic and semi-algebraic sets*, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990. MR**1070358** - Jacek Bochnak, Michel Coste, and Marie-Françoise Roy,
*Real algebraic geometry*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR**1659509**, DOI 10.1007/978-3-662-03718-8 - Jonathan M. Borwein and Warren B. Moors,
*Stability of closedness of convex cones under linear mappings*, J. Convex Anal.**16**(2009), no. 3-4, 699–705. MR**2583889** - Jonathan M. Borwein and Warren B. Moors,
*Stability of closedness of convex cones under linear mappings II*, J. Nonlinear Anal. Optim.**1**(2010), no. 1, 1–7. MR**2911681** - M. Coste.
*An introduction to semialgebraic geometry*, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000. - Si Tiep Dinh and Tien-Son Pham,
*Stability of closedness of closed convex sets under linear mappings*, J. Convex Anal.**28**(2021), no. 4, 1281–1291. MR**4374358** - M. Farnik, Z. Jelonek, and M. A. S. Ruas,
*Whitney theorem for complex polynomial mappings*, Math. Z.**295**(2020), no. 3-4, 1039–1065. MR**4125680**, DOI 10.1007/s00209-019-02370-1 - Alexandre Fernandes and J. Edson Sampaio,
*On Lipschitz rigidity of complex analytic sets*, J. Geom. Anal.**30**(2020), no. 1, 706–718. MR**4058534**, DOI 10.1007/s12220-019-00162-x - Mark Goresky and Robert MacPherson,
*Stratified Morse theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR**932724**, DOI 10.1007/978-3-642-71714-7 - Victor Guillemin and Alan Pollack,
*Differential topology*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR**0348781** - Huy-Vui Hà and Tiê’n-So’n Phạm,
*Genericity in polynomial optimization*, Series on Optimization and its Applications, vol. 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. With a foreword by Jean Bernard Lasserre. MR**3643252**, DOI 10.1142/q0066 - Robert M. Hardt,
*Semi-algebraic local-triviality in semi-algebraic mappings*, Amer. J. Math.**102**(1980), no. 2, 291–302. MR**564475**, DOI 10.2307/2374240 - Shunsuke Ichiki,
*Generic linear perturbations*, Proc. Amer. Math. Soc.**146**(2018), no. 11, 4981–4991. MR**3856163**, DOI 10.1090/proc/14094 - Do Sang Kim, Phạm Tiến So’n, and Nguyen Van Tuyen,
*On the existence of Pareto solutions for polynomial vector optimization problems*, Math. Program.**177**(2019), no. 1-2, Ser. A, 321–341. MR**3987202**, DOI 10.1007/s10107-018-1271-7 - Do Sang Kim, Boris S. Mordukhovich, Tiến-Sơn Phạm, and Nguyen Van Tuyen,
*Existence of efficient and properly efficient solutions to problems of constrained vector optimization*, Math. Program.**190**(2021), no. 1-2, Ser. A, 259–283. MR**4322643**, DOI 10.1007/s10107-020-01532-y - K. Kurdyka and G. Raby,
*Densité des ensembles sous-analytiques*, Ann. Inst. Fourier (Grenoble)**39**(1989), no. 3, 753–771 (French, with English summary). MR**1030848** - John N. Mather,
*Generic projections*, Ann. of Math. (2)**98**(1973), 226–245. MR**362393**, DOI 10.2307/1970783 - Gábor Pataki and Levent Tunçel,
*On the generic properties of convex optimization problems in conic form*, Math. Program.**89**(2001), no. 3, Ser. A, 449–457. MR**1814549**, DOI 10.1007/PL00011408 - Lou van den Dries and Chris Miller,
*Geometric categories and o-minimal structures*, Duke Math. J.**84**(1996), no. 2, 497–540. MR**1404337**, DOI 10.1215/S0012-7094-96-08416-1 - Lou van den Dries,
*Tame topology and o-minimal structures*, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR**1633348**, DOI 10.1017/CBO9780511525919

## Additional Information

**Sĩ Tiệp Đinh**- Affiliation: Institute of Mathematics, VAST, 18, Hoang Quoc Viet Road, Cau Giay District 10307, Hanoi, Vietnam
- ORCID: 0000-0001-9116-4534
- Email: dstiep@math.ac.vn
**Zbigniew Jelonek**- Affiliation: Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland
- MR Author ID: 241045
- ORCID: 0000-0002-1065-8688
- Email: najelone@cyf-kr.edu.pl
**Tiến Sơn Phạm**- Affiliation: Department of Mathematics, Dalat University, 1 Phu Dong Thien Vuong, Dalat, Vietnam
- Email: sonpt@dlu.edu.vn
- Received by editor(s): April 4, 2021
- Received by editor(s) in revised form: August 27, 2021
- Published electronically: May 20, 2022
- Additional Notes: The second author was partially supported by the grant of Narodowe Centrum Nauki number 2019/33/B/ST1/00755.

The first and the third authors were partially supported by the Vietnam Academy of Science and Technology under Grant Number ĐLTE00.01/21-22 - Communicated by: Adrian Ioana
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**150**(2022), 3663-3673 - MSC (2020): Primary 14P10, 58A35; Secondary 14P15, 32C05, 58A07
- DOI: https://doi.org/10.1090/proc/15827
- MathSciNet review: 4446220