Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Continuous nowhere Hölder functions on $\mathbb {Z}_{p}$
HTML articles powered by AMS MathViewer

by G. Araújo, L. Bernal-González, J. Fernández-Sánchez and J. B. Seoane–Sepúlveda
Proc. Amer. Math. Soc. 151 (2023), 1031-1040
DOI: https://doi.org/10.1090/proc/16185
Published electronically: December 21, 2022

Abstract:

K. Weierstrass (1872) was probably the first to present the existence of continuous nowhere differentiable functions (although B. Bolzano, in 1822, was the first to come up with such a construction). Almost a century later, V. Gurariĭ [Dokl. Akad. SSSR 167 (1966), pp. 971–973] observed that the family of continuous functions on $[0,1]$ that are differentiable at no point contains, except for the null function, an infinite dimensional vector space. Moreover, and among other recent contributions in this direction, S. Hencl [Proc. Amer. Math. Soc. 128 (2000), p. 3505–3511] generalized the previously mentioned result by proving the existence of isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions. Here, we continue this ongoing research with the study of continuous nowhere Hölder functions, no longer defined in subsets of $\mathbb {R}$, but in subsets of the $p$-adic field $\mathbb {Q}_p$.
References
Similar Articles
Bibliographic Information
  • G. Araújo
  • Affiliation: Departamento de Matemática, Universidade Estadual da Paraíba, 58.429-500 Campina Grande, Brazil
  • ORCID: 0000-0002-8026-9039
  • Email: gustavoaraujo@cct.uepb.edu.br
  • L. Bernal-González
  • Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Instituto de Matemáticas Antonio de Castro Brzezicki, Universidad de Sevilla, Avenida Reina Mercedes, Sevilla 41080, Spain
  • Email: lbernal@us.es
  • J. Fernández-Sánchez
  • Affiliation: Instituto de Matemática Interdisciplinar (IMI), Universidad Complutense de Madrid, Madrid, Spain; and Grupo de investigación de Teoría de Cópulas y Aplicaciones, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
  • ORCID: 0000-0002-2577-8404
  • Email: juanfernandez@ual.es
  • J. B. Seoane–Sepúlveda
  • Affiliation: Instituto de Matemática Interdisciplinar (IMI), Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3, Universidad Complutense de Madrid, 28040 Madrid, Spain
  • MR Author ID: 680972
  • Email: jseoane@ucm.es
  • Received by editor(s): December 3, 2021
  • Received by editor(s) in revised form: May 25, 2022, and June 18, 2022
  • Published electronically: December 21, 2022
  • Additional Notes: The first author was supported by Grant 3024/2021, Paraíba State Research Foundation (FAPESQ). The second author was supported by Plan Andaluz de Investigación de la Junta de Andalucía FQM-127, by PAIDI P20-00637, and by MCINN Grant PGC2018-098474-B-C21. The second author was supported by Plan Andaluz de Investigación de la Junta de Andalucía FQM-127 Grant P20-00637 and FEDER US-138096 and by MCINN Grant PGC2018-098474-B-C21. The fourth author was supported by Grant PGC2018-097286-B-I00
  • Communicated by: Harold P. Boas
  • © Copyright 2022 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 151 (2023), 1031-1040
  • MSC (2020): Primary 15A03, 46B87, 26E30, 46S10, 32P05
  • DOI: https://doi.org/10.1090/proc/16185
  • MathSciNet review: 4531636