Continuous nowhere Hölder functions on $\mathbb {Z}_{p}$
HTML articles powered by AMS MathViewer
- by G. Araújo, L. Bernal-González, J. Fernández-Sánchez and J. B. Seoane–Sepúlveda
- Proc. Amer. Math. Soc. 151 (2023), 1031-1040
- DOI: https://doi.org/10.1090/proc/16185
- Published electronically: December 21, 2022
- HTML | PDF | Request permission
Abstract:
K. Weierstrass (1872) was probably the first to present the existence of continuous nowhere differentiable functions (although B. Bolzano, in 1822, was the first to come up with such a construction). Almost a century later, V. Gurariĭ [Dokl. Akad. SSSR 167 (1966), pp. 971–973] observed that the family of continuous functions on $[0,1]$ that are differentiable at no point contains, except for the null function, an infinite dimensional vector space. Moreover, and among other recent contributions in this direction, S. Hencl [Proc. Amer. Math. Soc. 128 (2000), p. 3505–3511] generalized the previously mentioned result by proving the existence of isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions. Here, we continue this ongoing research with the study of continuous nowhere Hölder functions, no longer defined in subsets of $\mathbb {R}$, but in subsets of the $p$-adic field $\mathbb {Q}_p$.References
- Pieter C. Allaart and Kiko Kawamura, The improper infinite derivatives of Takagi’s nowhere-differentiable function, J. Math. Anal. Appl. 372 (2010), no. 2, 656–665. MR 2678891, DOI 10.1016/j.jmaa.2010.06.059
- Richard M. Aron, Luis Bernal González, Daniel M. Pellegrino, and Juan B. Seoane Sepúlveda, Lineability: the search for linearity in mathematics, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016. MR 3445906
- Richard Aron, V. I. Gurariy, and J. B. Seoane, Lineability and spaceability of sets of functions on $\Bbb R$, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795–803. MR 2113929, DOI 10.1090/S0002-9939-04-07533-1
- Frédéric Bayart and Lucas Quarta, Algebras in sets of queer functions, Israel J. Math. 158 (2007), 285–296. MR 2342549, DOI 10.1007/s11856-007-0014-x
- E. I. Berezhnoĭ, The subspace of $C[0,1]$ consisting of functions having no finite one-sided derivatives at any point, Mat. Zametki 73 (2003), no. 3, 348–354 (Russian, with Russian summary); English transl., Math. Notes 73 (2003), no. 3-4, 321–327. MR 1992595, DOI 10.1023/A:1023257809975
- Luis Bernal-González, Daniel Pellegrino, and Juan B. Seoane-Sepúlveda, Linear subsets of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 1, 71–130. MR 3119823, DOI 10.1090/S0273-0979-2013-01421-6
- J. Carmona Tapia, J. Fernández-Sánchez, J. B. Seoane-Sepúlveda, and W. Trutschnig, Lineability, spaceability, and latticeability of subsets of $C$([0,1]) and Sobolev spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 3, Paper No. 113, 20. MR 4426386, DOI 10.1007/s13398-022-01256-y
- Krzysztof C. Ciesielski and Juan B. Seoane-Sepúlveda, Differentiability versus continuity: restriction and extension theorems and monstrous examples, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 2, 211–260. MR 3923344, DOI 10.1090/bull/1635
- J. Fernández-Sánchez, S. Maghsoudi, D. L. Rodríguez-Vidanes, and J. B. Seoane-Sepúlveda, Classical vs. non-Archimedean analysis: an approach via algebraic genericity, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 2, Paper No. 72, 27. MR 4372614, DOI 10.1007/s13398-022-01209-5
- V. P. Fonf, V. I. Gurariy, and M. I. Kadets, An infinite dimensional subspace of $C[0,1]$ consisting of nowhere differentiable functions, C. R. Acad. Bulgare Sci. 52 (1999), no. 11-12, 13–16. MR 1738120
- F. J. García-Pacheco, C. Pérez-Eslava, and J. B. Seoane-Sepúlveda, Moduleability, algebraic structures, and nonlinear properties, J. Math. Anal. Appl. 370 (2010), no. 1, 159–167. MR 2651137, DOI 10.1016/j.jmaa.2010.05.016
- Fernando Q. Gouvêa, $p$-adic numbers, Universitext, Springer, Cham, [2020] ©2020. An introduction; Third edition of [ 1251959]. MR 4175370, DOI 10.1007/978-3-030-47295-5
- V. I. Gurariĭ, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167 (1966), 971–973 (Russian). MR 199674
- V. I. Gurariĭ, Linear spaces composed of everywhere nondifferentiable functions, C. R. Acad. Bulgare Sci. 44 (1991), no. 5, 13–16 (Russian). MR 1127022
- G. H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc. 17 (1916), no. 3, 301–325. MR 1501044, DOI 10.1090/S0002-9947-1916-1501044-1
- Stanislav Hencl, Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3505–3511. MR 1707147, DOI 10.1090/S0002-9939-00-05595-7
- P. Jiménez-Rodríguez, G. A. Muñoz-Fernández, and J. B. Seoane-Sepúlveda, On Weierstrass’ Monsters and lineability, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 4, 577–586. MR 3129060, DOI 10.36045/bbms/1382448181
- Svetlana Katok, $p$-adic analysis compared with real, Student Mathematical Library, vol. 37, American Mathematical Society, Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2007. MR 2298943, DOI 10.1090/stml/037
- Jan Kolář, Porous sets that are Haar null, and nowhere approximately differentiable functions, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1403–1408. MR 1814166, DOI 10.1090/S0002-9939-00-05811-1
- A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Mathematics, vol. 51, Marcel Dekker, Inc., New York, 1978. MR 512894
- L. Rodríguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3649–3654. MR 1328375, DOI 10.1090/S0002-9939-1995-1328375-8
- W. H. Schikhof, Non-Archimedean differentiation, Proceedings of the Conference on $p$-adic Analysis (Nijmegen, 1978) Katholieke Univ., Nijmegen, 1978, pp. 193–204. MR 522135
- W. H. Schikhof, Ultrametric calculus, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 1984. An introduction to $p$-adic analysis. MR 791759
- Juan B. Seoane, Chaos and lineability of pathological phenomena in analysis, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Kent State University. MR 2709064
- J. Thim, Continuous nowhere differentiable functions, Master Thesis, Luleå University of Technology, 2003.
Bibliographic Information
- G. Araújo
- Affiliation: Departamento de Matemática, Universidade Estadual da Paraíba, 58.429-500 Campina Grande, Brazil
- ORCID: 0000-0002-8026-9039
- Email: gustavoaraujo@cct.uepb.edu.br
- L. Bernal-González
- Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Instituto de Matemáticas Antonio de Castro Brzezicki, Universidad de Sevilla, Avenida Reina Mercedes, Sevilla 41080, Spain
- Email: lbernal@us.es
- J. Fernández-Sánchez
- Affiliation: Instituto de Matemática Interdisciplinar (IMI), Universidad Complutense de Madrid, Madrid, Spain; and Grupo de investigación de Teoría de Cópulas y Aplicaciones, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
- ORCID: 0000-0002-2577-8404
- Email: juanfernandez@ual.es
- J. B. Seoane–Sepúlveda
- Affiliation: Instituto de Matemática Interdisciplinar (IMI), Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3, Universidad Complutense de Madrid, 28040 Madrid, Spain
- MR Author ID: 680972
- Email: jseoane@ucm.es
- Received by editor(s): December 3, 2021
- Received by editor(s) in revised form: May 25, 2022, and June 18, 2022
- Published electronically: December 21, 2022
- Additional Notes: The first author was supported by Grant 3024/2021, Paraíba State Research Foundation (FAPESQ). The second author was supported by Plan Andaluz de Investigación de la Junta de Andalucía FQM-127, by PAIDI P20-00637, and by MCINN Grant PGC2018-098474-B-C21. The second author was supported by Plan Andaluz de Investigación de la Junta de Andalucía FQM-127 Grant P20-00637 and FEDER US-138096 and by MCINN Grant PGC2018-098474-B-C21. The fourth author was supported by Grant PGC2018-097286-B-I00
- Communicated by: Harold P. Boas
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1031-1040
- MSC (2020): Primary 15A03, 46B87, 26E30, 46S10, 32P05
- DOI: https://doi.org/10.1090/proc/16185
- MathSciNet review: 4531636