On the bifurcation theory of the Ginzburg–Landau equations
HTML articles powered by AMS MathViewer
- by Ákos Nagy and Gonçalo Oliveira;
- Proc. Amer. Math. Soc. 152 (2024), 653-664
- DOI: https://doi.org/10.1090/proc/16510
- Published electronically: December 1, 2023
- HTML | PDF
Abstract:
We construct nonminimal and irreducible solutions to the Ginzburg–Landau equations on closed manifolds of arbitrary dimension with trivial first real cohomology. Our method uses bifurcation theory where the “bifurcation points” are characterized by the eigenvalues of a Laplace-type operator. To our knowledge these are the first such examples on nontrivial line bundles.References
- Steven B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1990), no. 1, 1–17. MR 1086749
- D. Chouchkov, N. M. Ercolani, S. Rayan, and I. M. Sigal, Ginzburg-Landau equations on Riemann surfaces of higher genus, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), no. 1, 79–103 (English, with English and French summaries). MR 4049917, DOI 10.1016/j.anihpc.2019.04.002
- Oscar García-Prada, Invariant connections and vortices, Comm. Math. Phys. 156 (1993), no. 3, 527–546.
- Shangjiang Guo and Jianhong Wu, Bifurcation theory of functional differential equations, Applied Mathematical Sciences, vol. 184, Springer, New York, 2013. MR 3098815, DOI 10.1007/978-1-4614-6992-6
- Arthur Jaffe and Clifford Taubes, Vortices and monopoles, Progress in Physics, vol. 2, Birkhäuser, Boston, MA, 1980. Structure of static gauge theories. MR 614447
- Ákos Nagy, Irreducible Ginzburg-Landau fields in dimension 2, J. Geom. Anal. 28 (2018), no. 2, 1853–1868. MR 3790522, DOI 10.1007/s12220-017-9890-4
- Ákos Nagy and Gonçalo Oliveira, Nonminimal solutions to the Ginzburg–Landau equations in dimension 2,, arXiv:abs/2103.05613 (2022).
- Davide Parise, Alessandro Pigati, and Stern Daniel, Convergence of the self-dual $U (1)$-Yang–Mills–Higgs energies to the $(n-2)$-area functional, Comm. Pure Appl. Math. 77 (2024), no. 1, 670–730., DOI 10.1002/cpa.22150
- Thomas H. Parker, A Morse theory for equivariant Yang-Mills, Duke Math. J. 66 (1992), no. 2, 337–356. MR 1162193, DOI 10.1215/S0012-7094-92-06610-5
- Thomas H. Parker, Nonminimal Yang-Mills fields and dynamics, Invent. Math. 107 (1992), no. 2, 397–420. MR 1144429, DOI 10.1007/BF01231895
- Thomas H. Parker, Equivariant Sobolev theorems and Yang-Mills-Higgs fields, Global analysis in modern mathematics (Orono, ME, 1991; Waltham, MA, 1992) Publish or Perish, Houston, TX, 1993, pp. 33–72. MR 1278750
- Alessandro Pigati and Daniel Stern, Minimal submanifolds from the abelian Higgs model, Invent. Math. 223 (2021), no. 3, 1027–1095. MR 4213771, DOI 10.1007/s00222-020-01000-6
- Katrin Wehrheim, Uhlenbeck compactness, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2004. MR 2030823, DOI 10.4171/004
Bibliographic Information
- Ákos Nagy
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
- MR Author ID: 076389
- ORCID: 0000-0002-1799-7631
- Email: contact@akosnagy.com
- Gonçalo Oliveira
- Affiliation: Departamento de Matemática, Instituto Superior Técnico, Lisbon, Portugal
- MR Author ID: 1087767
- ORCID: 0000-0002-4990-1788
- Email: goncalo.m.f.oliveira@tecnico.ulisboa.pt
- Received by editor(s): October 10, 2022
- Received by editor(s) in revised form: April 4, 2023, and April 6, 2023
- Published electronically: December 1, 2023
- Additional Notes: The second author was supported by Fundação Serrapilheira 1812-27395, by CNPq grants 428959/2018-0 and 307475/2018-2, and FAPERJ through the program Jovem Cientista do Nosso Estado E-26/202.793/2019.
- Communicated by: Lu Wang
- © Copyright 2023 by the authors
- Journal: Proc. Amer. Math. Soc. 152 (2024), 653-664
- MSC (2020): Primary 35Q56, 53C07, 58E15, 58J55
- DOI: https://doi.org/10.1090/proc/16510
- MathSciNet review: 4683847