More-or-less-uniform sampling and lengths of curves
Authors:
Lyle Noakes and Ryszard Kozera
Journal:
Quart. Appl. Math. 61 (2003), 475-484
MSC:
Primary 65D05; Secondary 41A05, 51M25
DOI:
https://doi.org/10.1090/qam/1999832
MathSciNet review:
MR1999832
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: More-or-less-uniform samples are introduced and used to estimate lengths of smooth regular strictly convex curves in . Quartic convergence is proved and illustrated by examples.
- [1] Leo Dorst and Arnold W. M. Smeulders, Discrete straight line segments: parameters, primitives, and properties, Vision geometry (Hoboken, NJ, 1989) Contemp. Math., vol. 119, Amer. Math. Soc., Providence, RI, 1991, pp. 45–62. MR 1113899, https://doi.org/10.1090/conm/119/1113899
- [2] Reinhard Klette, Approximation and representation of three-dimensional objects, Advances in digital and computational geometry (Auckland, 1997) Springer, Singapore, 1998, pp. 161–193. MR 1649615
- [3] R. Klette, V. Kovalevsky, and B. Yip, On the length estimation of digital curves, In: L. J. Latecki, R. A. Melter, D. M. Mount, and A. Y. Wu (eds.), SPIE Conference Proceedings Vision Geometry VIII, Denver, Colorado, 1999, pp. 52-63
- [4] Reinhard Klette, Azriel Rosenfeld, and Fridrich Sloboda (eds.), Advances in digital and computational geometry, Springer-Verlag Singapore, Singapore, 1998. Papers from the Digital Geometry Day held at the University of Auckland, Auckland, January 29, 1997. MR 1649610
- [5] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR 0163331
- [6] P. A. P. Moran, Measuring the length of a curve, Biometrika 53 (1966), 359–364. MR 211574, https://doi.org/10.1093/biomet/53.3-4.359
- [7] Lyle Noakes, Ryszard Kozera, and Reinhard Klette, Length estimation for curves with different samplings, Digital and image geometry, Lecture Notes in Comput. Sci., vol. 2243, Springer, Berlin, 2001, pp. 339–351. MR 2133156, https://doi.org/10.1007/3-540-45576-0_20
- [8] Lyle Noakes, Ryszard Kozera, and Reinhard Klette, Length estimation for curves with different samplings, Digital and image geometry, Lecture Notes in Comput. Sci., vol. 2243, Springer, Berlin, 2001, pp. 339–351. MR 2133156, https://doi.org/10.1007/3-540-45576-0_20
- [9] Fridrich Sloboda, Bedrich Zaťko, and Josef Stoer, On approximation of planar one-dimensional continua, Advances in digital and computational geometry (Auckland, 1997) Springer, Singapore, 1998, pp. 113–160. MR 1649614
- [10] H. Steinhaus, Praxis der Rektifikation und zum Längenbegriff, Akad. Wiss. Leipzig. Berlin 82, 120-130 (1930)
- [11] B. L. van der Waerden, Geometry and algebra in ancient civilizations, Springer-Verlag, Berlin, 1983. MR 706258
- [12] A. G. Werschulz and H. Woźniakowski, What is the complexity of surface integration?, J. Complexity 17 (2001), no. 2, 442–466. 3rd Conference of the Foundations of Computational Mathematics (Oxford, 1999). MR 1843428, https://doi.org/10.1006/jcom.2001.0578
- [13] Knut Mørken and Karl Scherer, A general framework for high-accuracy parametric interpolation, Math. Comp. 66 (1997), no. 217, 237–260. MR 1372007, https://doi.org/10.1090/S0025-5718-97-00796-5
Retrieve articles in Quarterly of Applied Mathematics with MSC: 65D05, 41A05, 51M25
Retrieve articles in all journals with MSC: 65D05, 41A05, 51M25
Additional Information
DOI:
https://doi.org/10.1090/qam/1999832
Article copyright:
© Copyright 2003
American Mathematical Society