Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Localizing differentially evolving covariance structures via scan statistics


Authors: Ronak Mehta, Hyunwoo J. Kim, Shulei Wang, Sterling C. Johnson, Ming Yuan and Vikas Singh
Journal: Quart. Appl. Math. 77 (2019), 357-398
MSC (2010): Primary 53B20, 53B21, 62F03, 62P10; Secondary 62H30, 62H10
DOI: https://doi.org/10.1090/qam/1522
Published electronically: December 17, 2018
MathSciNet review: 3932963
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recent results in coupled or temporal graphical models offer schemes for estimating the relationship structure between features when the data come from related (but distinct) longitudinal sources. A novel application of these ideas is for analyzing group-level differences, i.e., in identifying if trends of estimated objects (e.g., covariance or precision matrices) are different across disparate conditions (e.g., gender or disease). Often, poor effect sizes make detecting the differential signal over the full set of features difficult: for example, dependencies between only a subset of features may manifest differently across groups. In this work, we first give a parametric model for estimating trends in the space of SPD matrices as a function of one or more covariates. We then generalize scan statistics to graph structures, to search over distinct subsets of features (graph partitions) whose temporal dependency structure may show statistically significant groupwise differences. We theoretically analyze the Family Wise Error Rate (FWER) and bounds on Type 1 and Type 2 error. Evaluating on U.S. census data, we identify groups of states with cultural and legal overlap related to baby name trends and drug usage. On a cohort of individuals with risk factors for Alzheimer’s disease (but otherwise cognitively healthy), we find scientifically interesting group differences where the default analysis, i.e., models estimated on the full graph, do not survive reasonable significance thresholds.


References [Enhancements On Off] (What's this?)

References
  • M. S. Albert, S. T. DeKosky, D. Dickson, B. Dubois, H. H. Feldman, N. C. Fox, A. Gamst, D. M. Holtzman, W. J. Jagust, R. C. Petersen et al., The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease, Alzheimer’s & Dementia 7 (2011), no. 3, 270–279.
  • M. S. Albert, M. B. Moss, R. Tanzi, and K. Jones, Preclinical prediction of ad using neuropsychological tests, Journal of the International Neuropsychological Society 7 (2001), no. 05, 631–639.
  • Ery Arias-Castro, Emmanuel J. Candès, and Arnaud Durand, Detection of an anomalous cluster in a network, Ann. Statist. 39 (2011), no. 1, 278–304. MR 2797847, DOI https://doi.org/10.1214/10-AOS839
  • Sanjeev Arora and Boaz Barak, Computational complexity, Cambridge University Press, Cambridge, 2009. A modern approach. MR 2500087
  • M. Banerjee, R. Chakraborty et al., Nonlinear regression on Riemannian manifolds and its applications to neuro-image analysis, MICCAI, 2015, pp. 719–727.
  • E. Belilovsky, G. Varoquaux, and M. B Blaschko, Hypothesis testing for differences in gaussian graphical models: Applications to brain connectivity, arXiv preprint arXiv:1512.08643 (2015).
  • Tony Cai, Weidong Liu, and Xi Luo, A constrained $\ell _1$ minimization approach to sparse precision matrix estimation, J. Amer. Statist. Assoc. 106 (2011), no. 494, 594–607. MR 2847973, DOI https://doi.org/10.1198/jasa.2011.tm10155
  • E. H. Corder, A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C. Gaskell, G. Wet al Small, A. D. Roses, J. L. Haines, and M. Al Pericak-Vance, Gene dose of apolipoprotein e type 4 allele and the risk of Alzheimer’s disease in late onset families, Science 261 (1993), no. 5123, 921–923.
  • E. Cornea, H. Zhu et al., Regression models on Riemannian symmetric spaces, JRSS-B (2016).
  • Patrick Danaher, Pei Wang, and Daniela M. Witten, The joint graphical lasso for inverse covariance estimation across multiple classes, J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 (2014), no. 2, 373–397. MR 3164871, DOI https://doi.org/10.1111/rssb.12033
  • B. F. Darst, R. L. Koscik, A. M. Racine, J. M. Oh, R. A. Krause, C. M. Carlsson, H. Zetterberg, K. Blennow, B. T. Christian, B. B. Bendlin et al., Pathway-specific polygenic risk scores as predictors of amyloid-$\beta$ deposition and cognitive function in a sample at increased risk for Alzheimer’s disease, Journal of Alzheimer’s Disease 55 (2017), no. 2, 473–484.
  • Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207
  • G. Douaud, S. Jbabdi, T. E. J. Behrens, R. A. Menke, A. Gass, A. U. Monsch, A. Rao, B. Whitcher, G. Kindlmann, P. M. Matthews et al., Dti measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in mci and mild alzheimer’s disease, Neuroimage 55 (2011), no. 3, 880–890.
  • J. Du, A. Goh, S. Kushnarev, and A. Qiu, Geodesic regression on orientation distribution functions with its application to an aging study, NeuroImage 87 (2014), 416–426.
  • J. Fan, X. Han et al., Control of the fdr under arbitrary covariance dependence, JASA (2012).
  • P. Thomas Fletcher, Geodesic regression and the theory of least squares on Riemannian manifolds, Int. J. Comput. Vis. 105 (2013), no. 2, 171–185. MR 3104017, DOI https://doi.org/10.1007/s11263-012-0591-y
  • T. P. Fletcher and S. Joshi, Riemannian geometry for the statistical analysis of diffusion tensor data, Signal Processing 87 (2007), no. 2, 250–262.
  • L. Fratiglioni, M. Grut, Y. Forsell, M. Viitanen, M. Grafström, K. Holmen, K. Ericsson, L. Bäckman, A. Ahlbom, and B. Winblad, Prevalence of Alzheimer’s disease and other dementias in an elderly urban population relationship with age, sex, and education, Neurology 41 (1991), no. 12, 1886–1886.
  • J. Friedman, T. Hastie et al., Sparse inverse covariance estimation with the graphical LASSO, Biostatistics 9 (2008), no. 3, 432–441.
  • Sara A. van de Geer, Applications of empirical process theory, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 6, Cambridge University Press, Cambridge, 2000. MR 1739079
  • Ulf Grenander, Probabilities on algebraic structures, Courier Corporation, 2008.
  • Ulf Grenander and Michael I. Miller, Computational anatomy: an emerging discipline, Quart. Appl. Math. 56 (1998), no. 4, 617–694. Current and future challenges in the applications of mathematics (Providence, RI, 1997). MR 1668732, DOI https://doi.org/10.1090/qam/1668732
  • Ulf Grenander and Murray Rosenblatt, Statistical analysis of stationary time series, John Wiley & Sons, New York; Almqvist & Wiksell, Stockholm, 1957. MR 0084975
  • W. Härdle and E. Mammen, Comparing nonparametric versus parametric regression fits, Ann. Statist. 21 (1993), no. 4, 1926–1947. MR 1245774, DOI https://doi.org/10.1214/aos/1176349403
  • J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science 297 (2002), no. 5580, 353–356.
  • J. A. Hardy and G. A. Higgins, Alzheimer’s disease: The amyloid cascade hypothesis, Science 256 (1992), no. 5054, 184.
  • Y. Hong, N. Singh, R. Kwitt, and M. Niethammer, Group testing for longitudinal data, International Conference on Information Processing in Medical Imaging, Springer, 2015, pp. 139–151.
  • C. R. Jack Jr, H. J. Wiste, P. Vemuri, S. D. Weigand, Matthew L. Senjem, Guang Zeng, Matt A. Bernstein, Jeffrey L. Gunter, Vernon S. Pankratz, Paul S. Aisen et al., Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease, Brain 133 (2010), no. 11, 3336–3348.
  • S. Jayasumana et al., Kernel methods on the Riemannian manifold of SPD matrices, CVPR, 2013.
  • X. Jessie Jeng, T. Tony Cai, and Hongzhe Li, Optimal sparse segment identification with application in copy number variation analysis, J. Amer. Statist. Assoc. 105 (2010), no. 491, 1156–1166. MR 2752611, DOI https://doi.org/10.1198/jasa.2010.tm10083
  • M. I. Jordan, Learning in graphical models, vol. 89, Springer Science & Business Media, 1998.
  • H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), no. 5, 509–541. MR 442975, DOI https://doi.org/10.1002/cpa.3160300502
  • H. J. Kim, N. Adluru et al., Multivariate general linear models on Riemannian manifolds with applications to statistical analysis of diffusion weighted images, CVPR, 2014, pp. 2705–2712.
  • Anne-Marie De Meyer, Probabilistic graphical models: principles and techniques [book review of MR2778120], J. Amer. Statist. Assoc. 106 (2011), no. 493, 380. MR 2816736
  • B. Laurent and P. Massart, Adaptive estimation of a quadratic functional by model selection, Ann. Statist. 28 (2000), no. 5, 1302–1338. MR 1805785, DOI https://doi.org/10.1214/aos/1015957395
  • Steffen L. Lauritzen, Graphical models, Oxford Statistical Science Series, vol. 17, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1419991
  • John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. MR 1930091
  • J. M. Lee, Introduction to smooth manifolds, Springer, 2012.
  • M. Deutsch Lezak, Neuropsychological assessment, Oxford University Press, USA, 2004.
  • Y.-C. Lin, Y.-C. Shih, W.-Y. I. Tseng, Y.-H. Chu, M.-T. Wu, T.-F. Chen, P.-F. Tang, and M.-J. Chiu, Cingulum correlates of cognitive functions in patients with mild cognitive impairment and early Alzheimer’s disease: A diffusion spectrum imaging study, Brain Topography 27 (2014), no. 3, 393–402.
  • Han Liu, John Lafferty, and Larry Wasserman, The nonparanormal: semiparametric estimation of high dimensional undirected graphs, J. Mach. Learn. Res. 10 (2009), 2295–2328. MR 2563983
  • Han Liu, Fang Han, Ming Yuan, John Lafferty, and Larry Wasserman, High-dimensional semiparametric Gaussian copula graphical models, Ann. Statist. 40 (2012), no. 4, 2293–2326. MR 3059084, DOI https://doi.org/10.1214/12-AOS1037
  • J. J. McArdle and R.Q. Bell, An introduction to latent growth models for developmental data analysis (2000).
  • S. Mori, K. Oishi et al., Stereotaxic white matter atlas based on diffusion tensor imaging in an icbm template, Neuroimage 40 (2008), no. 2, 570–582.
  • E. C. Mormino, R. A. Betensky, T. Hedden, A. P. Schultz, A. Ward, W. Huijbers, D. M. Rentz, K. A. Johnson, R. A. Sperling, Alzheimer’s Disease Neuroimaging Initiative et al., Amyloid and apoe $\varepsilon$4 interact to influence short-term decline in preclinical alzheimer disease, Neurology 82 (2014), no. 20, 1760–1767.
  • P. Muralidharan and P. T. Fletcher, Sasaki metrics for analysis of longitudinal data on manifolds, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012, pp. 1027–1034.
  • T. P. Naidich, H. M. Duvernoy, B. N. Delman, A. G. Sorensen, Spyros S Kollias, and E Mark Haacke, Duvernoy’s atlas of the human brain stem and cerebellum: high-field mri, surface anatomy, internal structure, vascularization and 3 d sectional anatomy, Springer Science & Business Media, 2009.
  • H. Qiu, F. Han, et al., Joint estimation of multiple graphical models from high dimensional time series, JRSS-B (2015).
  • A. M. Racine, N. Adluru et al., Associations between white matter microstructure and amyloid burden in preclinical AD: A multimodal imaging investigation, NeuroImage: Clinical 4 (2014), 604–614.
  • L. M. Rimol, I. Agartz, S. Djurovic, A. A. Brown, J. C. Roddey, Anna K. Kähler, Morten Mattingsdal, Lavinia Athanasiu, Alexander H. Joyner, Nicholas J. Schork et al., Sex-dependent association of common variants of microcephaly genes with brain structure, Proceedings of the National Academy of Sciences 107 (2010), no. 1, 384–388.
  • Charles S. Roehrig, Conditions for identification in nonparametric and parametric models, Econometrica 56 (1988), no. 2, 433–447. MR 935634, DOI https://doi.org/10.2307/1911080
  • M. A. Sager, B. Hermann, and A. La Rue, Middle-aged children of persons with Alzheimer’s disease: Apoe genotypes and cognitive function in the wisconsin registry for alzheimer’s prevention, Journal of geriatric psychiatry and neurology 18 (2005), no. 4, 245–249.
  • M. Schmidt et al., Rey auditory verbal learning test: a handbook, Western Psychological Services Los Angeles, 1996.
  • George A. F. Seber and Alan J. Lee, Linear regression analysis, 2nd ed., Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2003. MR 1958247
  • S. Sommer, F. Lauze, and M. Nielsen, Optimization over geodesics for exact principal geodesic analysis, Adv. Comput. Math. 40 (2014), no. 2, 283–313. MR 3194707, DOI https://doi.org/10.1007/s10444-013-9308-1
  • Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
  • N. Städler and S. Mukherjee, Two-sample testing in high-dimensional models, 2012.
  • M. Stehr, The effect of cigarette taxes on smoking among men and women, Health Economics 16 (2007), no. 12, 1333–1343.
  • Jingyong Su, Sebastian Kurtek, Eric Klassen, and Anuj Srivastava, Statistical analysis of trajectories on Riemannian manifolds: bird migration, hurricane tracking and video surveillance, Ann. Appl. Stat. 8 (2014), no. 1, 530–552. MR 3192001, DOI https://doi.org/10.1214/13-AOAS701
  • Michel Talagrand, The generic chaining, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Upper and lower bounds of stochastic processes. MR 2133757
  • R. E. Tanzi and L. Bertram, Twenty years of the alzheimer’s disease amyloid hypothesis: A genetic perspective, Cell 120 (2005), no. 4, 545–555.
  • T. N. Tombaugh, Trail making test a and b: Normative data stratified by age and education, Archives of clinical neuropsychology 19 (2004), no. 2, 203–214.
  • O. Tuzel, F. Porikli, and P. Meer, Human detection via classification on Riemannian manifolds, Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, IEEE, 2007, pp. 1–8.
  • J. B. Ullman and P. M. Bentler, Structural equation modeling, Wiley Online Library, 2003.
  • Guenther Walther, Optimal and fast detection of spatial clusters with scan statistics, Ann. Statist. 38 (2010), no. 2, 1010–1033. MR 2604703, DOI https://doi.org/10.1214/09-AOS732
  • S. Wang, J. Fan et al., Structured correlation detection with application to colocalization analysis in dual-channel fluorescence microscopic imaging, arXiv preprint arXiv:1604.02158 (2016).
  • D. Wechsler, Wechsler adult intelligence scale–fourth edition (wais–iv), 2014.
  • R. E. Wragg and D. V. Jeste, Overview of depression and psychosis in Alzheimer’s disease, Am J Psychiatry 146 (1989), no. 5, 577–587.
  • G. Wu, E.Y. Chang et al., An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines, ICML, vol. 8, 2005.
  • Y. Xie, B. C. Vemuri et al., Statistical analysis of tensor fields, MICCAI, Springer, 2010, pp. 682–689.
  • Lingzhou Xue and Hui Zou, Regularized rank-based estimation of high-dimensional nonparanormal graphical models, Ann. Statist. 40 (2012), no. 5, 2541–2571. MR 3097612, DOI https://doi.org/10.1214/12-AOS1041
  • Sen Yang, Zhaosong Lu, Xiaotong Shen, Peter Wonka, and Jieping Ye, Fused multiple graphical lasso, SIAM J. Optim. 25 (2015), no. 2, 916–943. MR 3343365, DOI https://doi.org/10.1137/130936397
  • Ming Yuan, High dimensional inverse covariance matrix estimation via linear programming, J. Mach. Learn. Res. 11 (2010), 2261–2286. MR 2719856
  • Zhengwu Zhang, Jingyong Su, Eric Klassen, Huiling Le, and Anuj Srivastava, Rate-invariant analysis of covariance trajectories, J. Math. Imaging Vision 60 (2018), no. 8, 1306–1323. MR 3850041, DOI https://doi.org/10.1007/s10851-018-0814-0
  • Shuheng Zhou, John Lafferty, and Larry Wasserman, Time varying undirected graphs, Mach. Learn. 80 (2010), no. 2-3, 295–319. MR 3108169, DOI https://doi.org/10.1007/s10994-010-5180-0

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 53B20, 53B21, 62F03, 62P10, 62H30, 62H10

Retrieve articles in all journals with MSC (2010): 53B20, 53B21, 62F03, 62P10, 62H30, 62H10


Additional Information

Ronak Mehta
Affiliation: Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
Email: ronakrm@cs.wisc.edu

Hyunwoo J. Kim
Affiliation: Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
MR Author ID: 1145369
Email: hwkim@cs.wisc.edu

Shulei Wang
Affiliation: Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin 53706 and Department of Statistics, Columbia University, New York, New York 10027
MR Author ID: 1244471
Email: shulei@stat.wisc.edu

Sterling C. Johnson
Affiliation: Alzheimer’s Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53792
MR Author ID: 1145335
Email: scj@medicine.wisc.edu

Ming Yuan
Affiliation: Department of Statistics, Columbia University, New York, New York 10027
MR Author ID: 674009
Email: ming.yuan@columbia.edu

Vikas Singh
Affiliation: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53706
MR Author ID: 766120
Email: vsingh@biostat.wisc.edu

Received by editor(s): March 2, 2018
Received by editor(s) in revised form: September 23, 2018
Published electronically: December 17, 2018
Additional Notes: This research was supported in part by NIH grants R01 AG040396, AG021155, EB022883 and NSF grants DMS 1265202 and CAREER award 1252725. The authors were also supported by the UW Center for Predictive Computational Phenotyping (via BD2K award AI117924) and the Wisconsin Alzheimer’s Disease Research Center (AG033514).
The first author was supported by a fellowship via training grant award T32LM012413.
The second author’s work on this project was performed at UW-Madison in 2017, before joining Amazon.
The fifth author was supported by NSF grant DMS-1803450.
Article copyright: © Copyright 2018 Brown University