Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Estimation of a growth development with partial diffeomorphic mappings


Authors: Irène Kaltenmark and Alain Trouvé
Journal: Quart. Appl. Math. 77 (2019), 227-267
MSC (2010): Primary 34H05, 49K30, 58E50
DOI: https://doi.org/10.1090/qam/1523
Published electronically: November 6, 2018
MathSciNet review: 3932960
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

In the field of computational anatomy, the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework has proved to be highly efficient for addressing the problem of modeling and analyzing of the variability of populations of shapes, allowing for the direct comparison and quantization of diffeomorphic morphometric changes. However, with the progress achieved in medical imaging analysis, the interest for longitudinal data set has substantially increased in the last years and requires the processing of more complex changes, which especially appear during growth or aging phenomena. The observed organisms are subject to transformations over time that are no longer diffeomorphic, at least in a biological sense. One reason might be a gradual creation of new material. The evolution of the shape can then be described by the joint action of a deformation process and a creation process.

In this paper, we extend the LDDMM framework to address the problem of nondiffeomorphic structural variations in longitudinal data. We keep the geometric central concept of a group of deformations acting on embedded shapes. The need for partial mappings leads to a time-varying dynamic that modifies the action of the group of deformations. We develop a theoretical framework and two algorithms to estimate realistic individual growth scenarios from a set of observations sparsely distributed in time. We present few numerical experiments on animal horns where the shapes are modeled by oriented varifolds. Each computed scenario is parametrized by low-dimensional variables providing the support for statistical analysis.


References [Enhancements On Off] (What's this?)

References
  • Sylvain Arguillère, Emmanuel Trélat, Alain Trouvé, and Laurent Younes, Shape deformation analysis from the optimal control viewpoint, J. Math. Pures Appl. (9) 104 (2015), no. 1, 139–178 (English, with English and French summaries). MR 3350723, DOI https://doi.org/10.1016/j.matpur.2015.02.004
  • S. Arguillère, The abstract setting for shape deformation analysis and lddmm methods, Geometric Science of Information, pp. 159–167, Springer, 2015.
  • S. Arguillère, The general setting for shape analysis, arXiv preprint arXiv:1504.01767, (2015).
  • G. Auzias, F. De Guio, A. Pepe, F. Rousseau, J.-F. Mangin, N. Girard, J. Lefèvre, and O. Coulon, Model-driven parameterization of fetal cortical surfaces, IEEE international symposium on Biomedical imaging, 2015.
  • G. Auzias, J. Lefevre, A. Le Troter, C. Fisher, M. Perrot, J. Régis, and O. Coulon, Model-driven harmonic parameterization of the cortical surface: HIP - HOP, Medical Imaging, IEEE Transactions on, 35 (5):873-887, 2013.
  • B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain, Medical image analysis, 12(1):26-41, 2008.
  • Martin Bauer, Martins Bruveris, Philipp Harms, and Peter W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group, Ann. Global Anal. Geom. 44 (2013), no. 1, 5–21. MR 3055801, DOI https://doi.org/10.1007/s10455-012-9353-x
  • M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, Computing large deformation metric mappings via geodesic flows of diffeomorphisms, International Journal of Computer Vision, 61 (2), 139-157, 2005.
  • S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L Ebos et al., Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth, PLOS Computational Biology, 10(8): e1003800, 2014.
  • E. Biot, M. Cortizo, J. Burguet, A. Kiss, M. Oughou, A. Maugarny-Calès, B. Gonçalves, B. Adroher, P. Andrey, A. Boudaoud, and P. Laufs, Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis, Development, 143: 3417-3428, 2016.
  • Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
  • N. Charon and A. Trouvé, Functional Currents: A New Mathematical Tool to Model and Analyse Functional Shapes, J. Math. Imaging Vis., 48: 413, 2014.
  • Nicolas Charon and Alain Trouvé, The varifold representation of nonoriented shapes for diffeomorphic registration, SIAM J. Imaging Sci. 6 (2013), no. 4, 2547–2580. MR 3138101, DOI https://doi.org/10.1137/130918885
  • B. Charlier, N. Charon, and A. Trouvé, The Fshape framework for the variability analysis of functional shapes, Found. Comput. Math. 17 (2017), no. 2, 287–357. MR 3627451, DOI https://doi.org/10.1007/s10208-015-9288-2
  • C. Clouchoux, D. Riviere, J.-F. Mangin, G. Operto, J. Regis, and O. Coulon, Model-driven parameterization of the cortical surface for localization and inter-subject matching, NeuroImage, vol. 50, no. 2, pp. 552-566, 2010.
  • S. Durrleman, M. Prastawa, N. Charon, J. R. Korenberg, S. Joshi, G. Gerig, and A. Trouvé, Morphometry of anatomical shape complexes with dense deformations and sparse parameters, Neuroimage, 2014 Nov 1; 101:35-49. doi: 10.1016/j.neuroimage.2014.06.043. Epub 2014 Jun 26.
  • Stanley Durrleman, Xavier Pennec, Alain Trouvé, José Braga, Guido Gerig, and Nicholas Ayache, Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data, Int. J. Comput. Vis. 103 (2013), no. 1, 22–59. MR 3048415, DOI https://doi.org/10.1007/s11263-012-0592-x
  • S. Durrleman, P. Fillard, X. Pennec, A. Trouvé, and N. Ayache, Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents, NeuroImage, 2010.
  • S. Durrleman, X. Pennec, A. Trouvé, N. Ayache, and J. Braga, Comparison of the endocast growth of chimpanzees and bonobos via temporal regression and spatiotemporal registration, 1st workshop on Spatiotemporal Image Analysis for Longitudinal and Time-Series Image Data, Beijing, September 2010.
  • J. Feydy, B. Charlier, F.-X. Vialard, G. Peyré, Optimal Transport for Diffeomorphic Registration, MICCAI 2017, Sep 2017, Quebec, Canada. 2017, Proc. MICCAI 2017.
  • Alessio Figalli and Nicola Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, J. Math. Pures Appl. (9) 94 (2010), no. 2, 107–130 (English, with English and French summaries). MR 2665414, DOI https://doi.org/10.1016/j.matpur.2009.11.005
  • P. Thomas Fletcher, Geodesic regression and the theory of least squares on Riemannian manifolds, Int. J. Comput. Vis. 105 (2013), no. 2, 171–185. MR 3104017, DOI https://doi.org/10.1007/s11263-012-0591-y
  • J. Glaunès, Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique, Ph.D. thesis, 2005.
  • J. Glaunès, A. Trouvé, and L. Younes, Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2:712–718, 2004.
  • N. Gonzalez, H. Vanhaeren, and D. Inzé, Leaf size control: complex coordination of cell division and expansion, Trends Plant Sci., 17: 332-340, 2012.
  • Ulf Grenander, General pattern theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. A mathematical study of regular structures; Oxford Science Publications. MR 1270904
  • Ulf Grenander and Michael I. Miller, Computational anatomy: an emerging discipline, Quart. Appl. Math. 56 (1998), no. 4, 617–694. Current and future challenges in the applications of mathematics (Providence, RI, 1997). MR 1668732, DOI https://doi.org/10.1090/qam/1668732
  • U. Grenander, A. Srivastava, and S. Saini, Characterization of biological growth using iterated diffeomorphisms, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006.
  • B. Gris, Modular approach on shape spaces, sub-Riemannian geometry and computational anatomy, Ph.D. Thesis, ENS Paris-Saclay, 2016.
  • Z. Hejnowicz, Trajectories of principal directions of growth, natural coordinate system in growing plant organ, Acta Societatis Botanicorum Poloniae, 53,301-316, 1984.
  • Kazufumi Ito and Karl Kunisch, Lagrange multiplier approach to variational problems and applications, Advances in Design and Control, vol. 15, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. MR 2441683
  • Sarang C. Joshi and Michael I. Miller, Landmark matching via large deformation diffeomorphisms, IEEE Trans. Image Process. 9 (2000), no. 8, 1357–1370. MR 1808275, DOI https://doi.org/10.1109/83.855431
  • I. Kaltenmark, Geometrical Growth Models for Computational Anatomy, Ph.D. Thesis, ENS Paris-Saclay, 2016.
  • I. Kaltenmark and A. Trouvé, Partial Matchings and Growth Mapped Evolutions in Shape Spaces, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 28-36, 2016.
  • I. Kaltenmark, B. Charlier, and N. Charon, A general framework for curve and surface comparison and registration with oriented varifolds, Computer Vision and Pattern Recognition (CVPR), 2017.
  • John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
  • D. Lombardi and E. Maitre, Eulerian models and algorithms for unbalanced optimal transport, hal-00976501v3, 2013.
  • Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal. 23 (2007), no. 1, 74–113. MR 2333829, DOI https://doi.org/10.1016/j.acha.2006.07.004
  • M. I. Miller, A. Trouvé, and L. Younes, On the metrics and Euler-Lagrange equations of computational anatomy, Annual Review of Biomedical Engineering, 4:375-405, 2002.
  • M. I. Miller, A. Trouvé, and L. Younes, Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D’Arcy Thompson, Annual Review of Biomedical Engineering, Vol. 17, 447-509, 2015.
  • M. I. Miller, L. Younes, J. T. Ratnanather, T. Brown, H. Trinh, D. S. Lee, D. Tward, P. B. Mahon, S. Mori, M. Albert, BIOCARD Research Team, Amygdalar atrophy in symptomatic Alzheimer’s disease based on diffeomorphometry: The BIOCARD cohort, Neurobiology of aging, Vol. 36, S3-S10, 2015.
  • D. E. Moulton, A. Goriely, and R. Chirat, Mechanical growth and morphogenesis of seashells, J. Theoret. Biol. 311 (2012), 69–79. MR 2972198, DOI https://doi.org/10.1016/j.jtbi.2012.07.009
  • M. Niethammer, Y. Huang, and F.-X. Vialard, Geodesic Regression for Image Time-Series, Medical Image Computing and Computer-Assisted Intervention, 14(Pt 2):655–662, 2011.
  • Benedetto Piccoli and Francesco Rossi, Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal. 211 (2014), no. 1, 335–358. MR 3182483, DOI https://doi.org/10.1007/s00205-013-0669-x
  • L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, The Macmillan Co., New York, 1964. Translated by D. E. Brown; A Pergamon Press Book. MR 0186436
  • A. Qiu, L. Younes, M. I. Miller, and J. G. Csernansky, Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer’s type, NeuroImage, 40(1):68–76, 2008.
  • Georges Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1183, Hermann & Cie., Paris, 1952 (French). Publ. Inst. Math. Univ. Strasbourg 11, pp. 5–89, 155–156. MR 0055692
  • Walter Rudin, Analyse réelle et complexe, Masson et Cie, Éditeurs, Paris, 1975 (French). Traduit de l’anglais par N. Dhombres et F. Hoffman. MR 0389461
  • Stefan Schwabik and Guoju Ye, Topics in Banach space integration, Series in Real Analysis, vol. 10, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. MR 2167754
  • X. Tang, D. Holland, A. M. Dale, L. Younes, and M. I. Miller, Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer’s disease: Detecting, quantifying, and predicting, Human brain mapping, 35 (8), 3701-3725, 2014.
  • D’Arcy Wentworth Thompson, On Growth and Form, New edition, Cambridge University Press, Cambridge, England, 1942. MR 0006348
  • Emmanuel Trélat, Contrôle optimal, Mathématiques Concrètes. [Concrete Mathematics], Vuibert, Paris, 2005 (French). Théorie & applications. [Theory and applications]. MR 2224013
  • Alain Trouvé, Action de groupe de dimension infinie et reconnaissance de formes, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 8, 1031–1034 (French, with English and French summaries). MR 1360567
  • Alain Trouvé and François-Xavier Vialard, Shape splines and stochastic shape evolutions: a second order point of view, Quart. Appl. Math. 70 (2012), no. 2, 219–251. MR 2953101, DOI https://doi.org/10.1090/S0033-569X-2012-01250-4
  • Alain Trouvé and Laurent Younes, Local geometry of deformable templates, SIAM J. Math. Anal. 37 (2005), no. 1, 17–59. MR 2176922, DOI https://doi.org/10.1137/S0036141002404838
  • M. Vaillant and J. Glaunes, Surface matching via currents, Proceedings of Information Processing in Medical Imaging (IPMI), Lecture Notes in Computer Science, 3565(381-392), 2006.
  • François-Xavier Vialard, Laurent Risser, Daniel Rueckert, and Colin J. Cotter, Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation, Int. J. Comput. Vis. 97 (2012), no. 2, 229–241. MR 2897670, DOI https://doi.org/10.1007/s11263-011-0481-8
  • T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Diffeomorphic demons: Effcient non-parametric image registration, NeuroImage, 45(1):S61-S72, 2009.
  • Laurent Younes, Computable elastic distances between shapes, SIAM J. Appl. Math. 58 (1998), no. 2, 565–586. MR 1617630, DOI https://doi.org/10.1137/S0036139995287685
  • Laurent Younes, Shapes and diffeomorphisms, Applied Mathematical Sciences, vol. 171, Springer-Verlag, Berlin, 2010. MR 2656312
  • E. I. Zacharaki, D. Shen, S.-K. Lee, and C. Davatzikos, ORBIT: A Multiresolution Framework for Deformable Registration of Brain Tumor Images, IEEE Transactions on Medical Imaging, 27(8), 1003-1017, 2008.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 34H05, 49K30, 58E50

Retrieve articles in all journals with MSC (2010): 34H05, 49K30, 58E50


Additional Information

Irène Kaltenmark
Affiliation: Institut de Neurosciences de la Timone, UMR 7289, Aix-Marseille Université, CNRS, Marseille, France

Alain Trouvé
Affiliation: CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France

Received by editor(s): January 30, 2018
Received by editor(s) in revised form: October 2, 2018
Published electronically: November 6, 2018
Article copyright: © Copyright 2018 Brown University