Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Reversal permanent charge and concentrations in ionic flows via Poisson-Nernst-Planck models


Author: Hamid Mofidi
Journal: Quart. Appl. Math. 79 (2021), 581-600
MSC (2020): Primary 34B15, 92B05; Secondary 34A26, 34E15
DOI: https://doi.org/10.1090/qam/1593
Published electronically: May 6, 2021
MathSciNet review: 4328139
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This work examines the behavior of geometric mean of concentrations in various conditions when there is no electric current and studies the reversal permanent charge problem, the charge sharing seen in x-ray diffraction. The geometric mean of concentrations is an average of concentrations, which indicates the central tendency of concentrations by using the product of their values. Observations are acquired from analytical results established using geometric singular perturbation analysis of classical Poisson-Nernst-Planck models. For ionic mixtures of multiple ion species, Mofidi and Liu [SIAM J. Appl. Math. 80 (2020), 1908–1935] centered two ion species with unequal diffusion constants to acquire a system for determining the reversal potential and reversal permanent charge. They studied the reversal potential problem and its dependence on diffusion coefficients, membrane potential, boundary concentrations, etc. Here, we look at the dual problem of reversal permanent charge, its uniqueness, and its dependence on other conditions with the same approach. We consider two ion species with positive and negative charges, say Ca$^+$ and Cl$^-$, to determine the specific requirements under which the permanent charge is unique. Furthermore, we investigate the geometric mean of concentrations for various membrane potential and permanent charges values.


References [Enhancements On Off] (What's this?)

References
  • M. Z. Bazant, M. S. Kilic, B. D. Storey, and A. Ajdari, Towards an understanding of induced charge electrokinetics at large applied voltages in concentrated solutions, Adv. Coll. Interf. Sci. 152 (2009), 48–88.
  • Victor Barcilon, Ion flow through narrow membrane channels. I, SIAM J. Appl. Math. 52 (1992), no. 5, 1391–1404. MR 1182130, DOI 10.1137/0152080
  • A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980.
  • D. Boda, W. Nonner, M. Valisko, D. Henderson, B. Eisenberg, and D. Gillespie, Steric selectivity in Na channels arising from protein polarization and mobile side chains, Biophys. J. 93 (2007), 1960–1980.
  • Martin Burger, Heinz W. Engl, Peter A. Markowich, and Paola Pietra, Identification of doping profiles in semiconductor devices, Inverse Problems 17 (2001), no. 6, 1765–1795. MR 1872921, DOI 10.1088/0266-5611/17/6/315
  • D. P. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J. 64 (1993), 1405–1421.
  • D. Chen, R. Eisenberg, J. Jerome, and C. Shu, Hydrodynamic model of temperature change in open ionic channels, Biophysical J. 69 (1995), 2304–2322.
  • Thomas F. Coleman and Yuying Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J. Optim. 6 (1996), no. 2, 418–445. MR 1387333, DOI 10.1137/0806023
  • S. Chung and S. Kuyucak, Predicting channel function from channel structure using Brownian dynamics simulations, Clin. Exp. Pharmacol Physiol. 28 (2001), 89-94.
  • B. Eisenberg, Ion Channels as Devices, J. Comp. Electro. 2 (2003), 245–249.
  • B. Eisenberg, Crowded charges in ion channels, Advances in Chemical Physics (ed. S. A. Rice) (2011), 77–223, John Wiley and Sons, Inc. New York.
  • B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys. 133 (2010), 104104(1–23).
  • Bob Eisenberg and Weishi Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal. 38 (2007), no. 6, 1932–1966. MR 2299436, DOI 10.1137/060657480
  • Bob Eisenberg and Weishi Liu, Relative dielectric constants and selectivity ratios in open ionic channels, Mol. Based Math. Biol. 5 (2017), 125–137. MR 3719327, DOI 10.1515/mlbmb-2017-0008
  • Bob Eisenberg, Weishi Liu, and Hongguo Xu, Reversal permanent charge and reversal potential: case studies via classical Poisson-Nernst-Planck models, Nonlinearity 28 (2015), no. 1, 103–127. MR 3297128, DOI 10.1088/0951-7715/28/1/103
  • Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, DOI 10.1016/0022-0396(79)90152-9
  • A. Fick, On liquid diffusion, Philos. Mag. J. Sci. 10 (1855), 31–39.
  • G. Gerhardt and R. N. Adams, Determination of diffusion constants by flow injection analysis, Analytical chemistry J. 54 (1982), 2618–2620.
  • D. Gillespie, W. Nonner, and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, J. Phys.: Condens. Matter 14 (2002), 12129–12145.
  • S. M. H. Hashemi Amrei, S. C. Bukosky, S. P. Rader, W. D. Ristenpart, and G. H. Miller, Oscillating Electric Fields in Liquids Create a Long-Range Steady Field, Phys. Rev. Lett. 121 185504(2018).
  • Geertje Hek, Geometric singular perturbation theory in biological practice, J. Math. Biol. 60 (2010), no. 3, 347–386. MR 2576546, DOI 10.1007/s00285-009-0266-7
  • B. Hille, Ion Channels of Excitable Membranes (Third Edition), Sinauer Associates, Inc., Sunderland, Massachusetts, USA 2001.
  • B. Hille, Transport Across Cell Membranes: Carrier Mechanisms, Chapter 2, Textbook of Physiology (eds. H. D. Patton, A. F. Fuchs, B. Hille, A. M. Scher, and R. D. Steiner). Philadelphia, Saunders 1 (1989), 24–47.
  • Yunkyong Hyon, Bob Eisenberg, and Chun Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci. 9 (2011), no. 2, 459–475. MR 2815679
  • YunKyong Hyon, James E. Fonseca, Bob Eisenberg, and Chun Liu, Energy variational approach to study charge inversion (layering) near charged walls, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 8, 2725–2743. MR 2959249, DOI 10.3934/dcdsb.2012.17.2725
  • M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173
  • U. Hollerbach, D.-P. Chen, and R. S. Eisenberg, Two- and Three-Dimensional Poisson-Nernst-Planck Simulations of Current Flow through Gramicidin-A, J. Comp. Science 16 (2001), 373–409.
  • W. Im and B. Roux, Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory, J. Mol. Biol. 322 (2002), 851–869.
  • Shuguan Ji, Bob Eisenberg, and Weishi Liu, Flux ratios and channel structures, J. Dynam. Differential Equations 31 (2019), no. 3, 1141–1183. MR 3992067, DOI 10.1007/s10884-017-9607-1
  • Shuguan Ji and Weishi Liu, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part I: Analysis, J. Dynam. Differential Equations 24 (2012), no. 4, 955–983. MR 3000611, DOI 10.1007/s10884-012-9277-y
  • Shuguan Ji, Weishi Liu, and Mingji Zhang, Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math. 75 (2015), no. 1, 114–135. MR 3300414, DOI 10.1137/140992527
  • Christopher K. R. T. Jones, Geometric singular perturbation theory, Dynamical systems (Montecatini Terme, 1994) Lecture Notes in Math., vol. 1609, Springer, Berlin, 1995, pp. 44–118. MR 1374108, DOI 10.1007/BFb0095239
  • C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations 108 (1994), no. 1, 64–88. MR 1268351, DOI 10.1006/jdeq.1994.1025
  • Christian Kuehn, Multiple time scale dynamics, Applied Mathematical Sciences, vol. 191, Springer, Cham, 2015. MR 3309627, DOI 10.1007/978-3-319-12316-5
  • J.-L. Liu and B. Eisenberg, Poisson–Nernst–Planck-Fermi theory for modeling biological ion channels, J. Chem. Phys. 141 (2014), 12B640.
  • Weishi Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math. 65 (2005), no. 3, 754–766. MR 2136030, DOI 10.1137/S0036139903420931
  • Weishi Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differential Equations 246 (2009), no. 1, 428–451. MR 2467032, DOI 10.1016/j.jde.2008.09.010
  • Weishi Liu and Bixiang Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations 22 (2010), no. 3, 413–437. MR 2719914, DOI 10.1007/s10884-010-9186-x
  • Weishi Liu and Hongguo Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differential Equations 258 (2015), no. 4, 1192–1228. MR 3294345, DOI 10.1016/j.jde.2014.10.015
  • Weishi Liu, A flux ratio and a universal property of permanent charges effects on fluxes, Comput. Math. Biophys. 6 (2018), 28–40. MR 3861253, DOI 10.1515/cmb-2018-0003
  • Hamid Mofidi and Weishi Liu, Reversal potential and reversal permanent charge with unequal diffusion coefficients via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math. 80 (2020), no. 4, 1908–1935. MR 4138215, DOI 10.1137/19M1269105
  • Hamid Mofidi, Bob Eisenberg, and Weishi Liu, Effects of diffusion coefficients and permanent charge on reversal potentials in ionic channels, Entropy 22 (2020), no. 3, Paper No. 325, 23. MR 4217409, DOI 10.3390/e22030325
  • W. Nonner, L. Catacuzzeno, and B. Eisenberg, Binding and selectivity in L-type Calcium channels: A mean spherical approximation, Biophys. J. 79 (2000), 1976–1992.
  • J.-H. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study, SIAM J. Appl. Math. 57 (1997), no. 3, 609–630. MR 1450843, DOI 10.1137/S0036139995279809
  • V. Sasidhar and E. Ruckenstein, Electrolyte osmosis through capillaries, J. Colloid Interface Sci. 82 (1981), 439–457.
  • Z. Schuss, B. Nadler, and R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Phys. Rev. E 64 (2001), 1–14.
  • Lili Sun and Weishi Liu, Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: a case study, J. Dynam. Differential Equations 30 (2018), no. 2, 779–797. MR 3815585, DOI 10.1007/s10884-017-9578-2
  • P. Vanysek, Ionic conductivity and diffusion at infinite dilution, Handbook of Chemistry and Physics, 74th ed.; Linde, D. R., Ed.; CRC: Boca Raton 5 (1993), 90–92.
  • R. M. Warner, Jr., Microelectronics: Its unusual origin and personality, IEEE Trans. Electron. Devices 48 (2001), 2457–2467.
  • L. Zhang, B. Eisenberg, and W. Liu, An effect of large permanent charge: Decreasing flux with increasing transmembrane potential, Eur. Phys. J. Special Topics 227 (2019), 2575–2601.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2020): 34B15, 92B05, 34A26, 34E15

Retrieve articles in all journals with MSC (2020): 34B15, 92B05, 34A26, 34E15


Additional Information

Hamid Mofidi
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
MR Author ID: 1398602
ORCID: 0000-0002-7103-7260
Email: hamid-mofidi@uiowa.edu

Keywords: Concentrations, reversal permanent charge, PNP
Received by editor(s): January 21, 2021
Received by editor(s) in revised form: March 28, 2021
Published electronically: May 6, 2021
Article copyright: © Copyright 2021 Brown University