Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Trapping of a wave in a curved cylindrical acoustic waveguide with constant cross-section
HTML articles powered by AMS MathViewer

by S. A. Nazarov
Translated by: E. Peller
St. Petersburg Math. J. 31 (2020), 865-885
DOI: https://doi.org/10.1090/spmj/1626
Published electronically: September 3, 2020

Abstract:

Cylindrical acoustic waveguides with constant cross-section $\omega$ are considered, specifically, a straight waveguide $\Omega ={\mathbb R}\times \omega \subset {\mathbb R}^d$ and a locally curved waveguide $\Omega ^\varepsilon$ that depends on a parameter $\varepsilon \in (0,1]$. For $d>2$, in two different settings ($\varepsilon =1$ and $\varepsilon \ll 1$), the task is to find an eigenvalue $\lambda ^\varepsilon$ that is embedded in the continuous spectrum $[0,+\infty )$ of the waveguide $\Omega ^\varepsilon$ and, hence, is inherently unstable. In other words, a solution of the Neumann problem for the Helmholtz operator $\Delta +\lambda ^\varepsilon$ arises that vanishes at infinity and implies an eigenfunction in the Sobolev space $H^1(\Omega ^\varepsilon )$. In the first case, it is assumed that the cross-section $\omega$ has a double symmetry and an eigenvalue arises for any nontrivial curvature of the axis of the waveguide $\Omega ^\varepsilon$. In the second case, under an assumption on the shape of an asymmetric cross-section $\omega$, the eigenvalue $\lambda ^\varepsilon$ is formed by scrupulous fitting of the curvature $O(\varepsilon )$ for small $\varepsilon >0$.
References
  • M. Sh. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. MR 1192782
  • O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. MR 793735, DOI 10.1007/978-1-4757-4317-3
  • V. P. Maslov, An asymptotic expression for the eigenfunctions of the equation $\Delta u+k^{2}u=0$ with boundary conditions on equidistant curves and the propagation of electromagnetic waves in a waveguide, Soviet Physics Dokl. 123 (3) (1958), 1132–1135 (631–633 Dokl. Akad. Nauk SSSR). MR 0107472
  • V. P. Maslov and E. M. Vorob′ev, One-mode open cavities, Dokl. Akad. Nauk SSSR 179 (1968), no. 3, 558–561. (Russian)
  • P. Exner and P. Šeba, Bound states in curved quantum waveguides, J. Math. Phys. 30 (1989), no. 11, 2574–2580. MR 1019002, DOI 10.1063/1.528538
  • P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys. 7 (1995), no. 1, 73–102. MR 1310767, DOI 10.1142/S0129055X95000062
  • Pavel Exner and Hynek Kovařík, Quantum waveguides, Theoretical and Mathematical Physics, Springer, Cham, 2015. MR 3362506, DOI 10.1007/978-3-319-18576-7
  • S. A. Nazarov, Trapped waves in a cranked waveguide with hard walls, Acust. Zh. 57 (2011), no. 6, 746–754, English transl., Acoustical Phys. 57 (2011), no. 6, pp. 764–771.
  • D. V. Evans, M. Levitin, and D. Vassiliev, Existence theorems for trapped modes, J. Fluid Mech. 261 (1994), 21–31. MR 1265871, DOI 10.1017/S0022112094000236
  • I. V. Kamotskiĭ and S. A. Nazarov, Wood’s anomalies and surface waves in the problem of scattering by a periodic boundary. I, Mat. Sb. 190 (1999), no. 1, 109–138 (Russian, with Russian summary); English transl., Sb. Math. 190 (1999), no. 1-2, 111–141. MR 1700697, DOI 10.1070/SM1999v190n01ABEH000379
  • S. A. Nazarov, Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide, Theoret. and Math. Phys. 167 (2011), no. 2, 606–627. Translation of Teoret. Mat. Fiz. 167 (2011), no. 2, 239–263. MR 3166368, DOI 10.1007/s11232-011-0046-6
  • S. A. Nazarov, Forced stability of a simple eigenvalue in the continuous spectrum of a waveguide, Funktsional. Anal. i Prilozhen. 47 (2013), no. 3, 37–53 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 47 (2013), no. 3, 195–209. MR 3154838, DOI 10.1007/s10688-013-0026-8
  • S. A. Nazarov and B. A. Plamenevskiĭ, Selfadjoint elliptic problems: scattering and polarization operators on the edges of the boundary, Algebra i Analiz 6 (1994), no. 4, 157–186 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 6 (1995), no. 4, 839–863. MR 1304098
  • I. V. Kamotskiĭ and S. A. Nazarov, An augmented scattering matrix and exponentially decreasing solutions of an elliptic problem in a cylindrical domain, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 264 (2000), no. Mat. Vopr. Teor. Rasprostr. Voln. 29, 66–82, 322–323 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 111 (2002), no. 4, 3657–3666. MR 1796996, DOI 10.1023/A:1016377707919
  • Daniel Grieser, Spectra of graph neighborhoods and scattering, Proc. Lond. Math. Soc. (3) 97 (2008), no. 3, 718–752. MR 2448245, DOI 10.1112/plms/pdn020
  • M. Dauge, I. Djurdjevic, E. Faou, and A. Rössle, Eigenmode asymptotics in thin elastic plates, J. Math. Pures Appl. (9) 78 (1999), no. 9, 925–964. MR 1725748, DOI 10.1016/S0021-7824(99)00138-5
  • S. A. Nazarov, On the asymptotics of the spectrum of a problem in elasticity theory for a thin plate, Sibirsk. Mat. Zh. 41 (2000), no. 4, iii, 895–912 (Russian, with Russian summary); English transl., Siberian Math. J. 41 (2000), no. 4, 744–759. MR 1785611, DOI 10.1007/BF02679699
  • —, Asymptotic theory of thin plates and rods. Dimension reduction and integral estimates, Nauchn. kniga, Novosibirsk, 2002. (Russian)
  • W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. I, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], vol. 82, Akademie-Verlag, Berlin, 1991 (German). Störungen isolierter Randsingularitäten. [Perturbations of isolated boundary singularities]. MR 1101139
  • Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387, DOI 10.1515/9783110848915.525
  • V. G. Maz′ja and B. A. Plamenevskiĭ, Estimates in $L_{p}$ and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary, Math. Nachr. 81 (1978), 25–82 (Russian). MR 492821, DOI 10.1002/mana.19780810103
  • I. V. Kamotskiĭ and S. A. Nazarov, Exponentially decreasing solutions of the problem of diffraction by a rigid periodic boundary, Mat. Zametki 73 (2003), no. 1, 138–140 (Russian); English transl., Math. Notes 73 (2003), no. 1-2, 129–131. MR 1993547, DOI 10.1023/A:1022186320373
  • Sergey Nazarov, Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains, Sobolev spaces in mathematics. II, Int. Math. Ser. (N. Y.), vol. 9, Springer, New York, 2009, pp. 261–309. MR 2484629, DOI 10.1007/978-0-387-85650-6_{1}2
  • Vladimir A. Kozlov, Sergei A. Nazarov, and Anna Orlof, Trapped modes supported by localized potentials in the zigzag graphene ribbon, C. R. Math. Acad. Sci. Paris 354 (2016), no. 1, 63–67 (English, with English and French summaries). MR 3439726, DOI 10.1016/j.crma.2015.10.007
  • Milton Van Dyke, Perturbation methods in fluid mechanics, Applied Mathematics and Mechanics, Vol. 8, Academic Press, New York-London, 1964. MR 0176702
  • A. M. Il′in, Soglasovanie asimptoticheskikh razlozheniĭ resheniĭ kraevykh zadach, “Nauka”, Moscow, 1989 (Russian). With an English summary. MR 1007834
  • S. A. Nazarov, Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold, Sibirsk. Mat. Zh. 51 (2010), no. 5, 1086–1101 (Russian, with Russian summary); English transl., Sib. Math. J. 51 (2010), no. 5, 866–878. MR 2768506, DOI 10.1007/s11202-010-0087-3
  • Sergueï A. Nazarov, Weighted spaces with detached asymptotics in application to the Navier-Stokes equations, Advances in mathematical fluid mechanics (Paseky, 1999) Springer, Berlin, 2000, pp. 159–191. MR 1863212
  • S. A. Nazarov and B. A. Plamenevskiĭ, Radiation conditions for selfadjoint elliptic problems, Dokl. Akad. Nauk SSSR 311 (1990), no. 3, 532–536 (Russian); English transl., Soviet Math. Dokl. 41 (1990), no. 2, 274–277 (1991). MR 1075678
  • S. A. Nazarov and B. A. Plamenevskiĭ, Radiation principles for selfadjoint elliptic problems, Differential equations. Spectral theory. Wave propagation (Russian), Probl. Mat. Fiz., vol. 13, Leningrad. Univ., Leningrad, 1991, pp. 192–244, 308 (Russian, with Russian summary). MR 1341639
  • A. D. Aleksandrov and N. Yu. Netsvetaev, Geometriya, “Nauka”, Moscow, 1990 (Russian). MR 1129460
  • Y. Avishai, D. Bessis, B. G. Giraud, and G. Mantica, Quantum bound states in open geometries, Phys. Rev. B 44 (1991), no. 15, 8028–8034.
  • S. A. Nazarov, The discrete spectrum of cranked, branching, and periodic waveguides, Algebra i Analiz 23 (2011), no. 2, 206–247 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 23 (2012), no. 2, 351–379. MR 2841676, DOI 10.1090/S1061-0022-2012-01200-8
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35P15
  • Retrieve articles in all journals with MSC (2010): 35P15
Bibliographic Information
  • S. A. Nazarov
  • Affiliation: Saint Petersburg State University, University Embankment, 7/9, 199034 St. Petersburg, Russia
  • MR Author ID: 196508
  • Email: srgnazarov@yahoo.co.uk
  • Received by editor(s): August 7, 2017
  • Published electronically: September 3, 2020
  • Additional Notes: This work was supported by the Russian Science Foundation. (Project 17-11-01003)
  • © Copyright 2020 American Mathematical Society
  • Journal: St. Petersburg Math. J. 31 (2020), 865-885
  • MSC (2010): Primary 35P15
  • DOI: https://doi.org/10.1090/spmj/1626
  • MathSciNet review: 4022005