Rigorous numerics for fast-slow systems
HTML articles powered by AMS MathViewer
- by
Kaname Matsue;
Translated by: the author - Sugaku Expositions 36 (2023), 221-253
- DOI: https://doi.org/10.1090/suga/483
- Published electronically: August 14, 2023
- HTML | PDF | Request permission
Abstract:
We show a series of results about rigorous numerics for dynamical systems generated by ordinary differential equations called fast-slow systems obtained through the author’s recent research. The contents of the present paper are mainly based on the results of Matsue [Topol. Methods Nonlinear Anal. 50 (2017), pp. 357–486].References
- Xavier Cabré, Ernest Fontich, and Rafael de la Llave, The parameterization method for invariant manifolds. III. Overview and applications, J. Differential Equations 218 (2005), no. 2, 444–515. MR 2177465, DOI 10.1016/j.jde.2004.12.003
- Maciej J. Capiński and Piotr Zgliczyński, Geometric proof for normally hyperbolic invariant manifolds, J. Differential Equations 259 (2015), no. 11, 6215–6286. MR 3397322, DOI 10.1016/j.jde.2015.07.020
- Maciej J. Capiński and Piotr Zgliczyński, Beyond the Melnikov method: a computer assisted approach, J. Differential Equations 262 (2017), no. 1, 365–417. MR 3567489, DOI 10.1016/j.jde.2016.09.032
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 1978. MR 511133, DOI 10.1090/cbms/038
- Aleksander Czechowski and Piotr Zgliczyński, Existence of periodic solutions of the FitzHugh-Nagumo equations for an explicit range of the small parameter, SIAM J. Appl. Dyn. Syst. 15 (2016), no. 3, 1615–1655. MR 3544647, DOI 10.1137/15M1007707
- Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow, Validated continuation for equilibria of PDEs, SIAM J. Numer. Anal. 45 (2007), no. 4, 1398–1424. MR 2338393, DOI 10.1137/050645968
- Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, DOI 10.1016/0022-0396(79)90152-9
- Marcio Gameiro, Tomáš Gedeon, William Kalies, Hiroshi Kokubu, Konstantin Mischaikow, and Hiroe Oka, Topological horseshoes of traveling waves for a fast-slow predator-prey system, J. Dynam. Differential Equations 19 (2007), no. 3, 623–654. MR 2350241, DOI 10.1007/s10884-006-9013-6
- John Guckenheimer, Tomas Johnson, and Philipp Meerkamp, Rigorous enclosures of a slow manifold, SIAM J. Appl. Dyn. Syst. 11 (2012), no. 3, 831–863. MR 3022052, DOI 10.1137/120861813
- Christopher K. R. T. Jones, Geometric singular perturbation theory, Dynamical systems (Montecatini Terme, 1994) Lecture Notes in Math., vol. 1609, Springer, Berlin, 1995, pp. 44–118. MR 1374108, DOI 10.1007/BFb0095239
- C. K. R. T. Jones, Tasso J. Kaper, and Nancy Kopell, Tracking invariant manifolds up to exponentially small errors, SIAM J. Math. Anal. 27 (1996), no. 2, 558–577. MR 1377489, DOI 10.1137/S003614109325966X
- C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations 108 (1994), no. 1, 64–88. MR 1268351, DOI 10.1006/jdeq.1994.1025
- M. Kashiwagi, kv: C++ numerical verification libraries, http://verifiedby.me/kv/.
- Kaname Matsue, Rigorous numerics for fast-slow systems with one-dimensional slow variable: topological shadowing approach, Topol. Methods Nonlinear Anal. 50 (2017), no. 2, 357–468. MR 3747023, DOI 10.12775/tmna.2016.072
- https://researchmap.jp/7000003451/, Download link in the information of the paper [14].
- K. Matsue, Rigorous numerics of finite-time singularities in dynamical systems - methodology and applications, Preprint, arXiv:1711.01911, 2017.
- Kaname Matsue, Tomohiro Hiwaki, and Nobito Yamamoto, On the construction of Lyapunov functions with computer assistance, J. Comput. Appl. Math. 319 (2017), 385–412. MR 3614234, DOI 10.1016/j.cam.2017.01.002
- Kaname Matsue and Akitoshi Takayasu, Rigorous numerics of blow-up solutions for ODEs with exponential nonlinearity, J. Comput. Appl. Math. 374 (2020), 112607, 11. MR 4062945, DOI 10.1016/j.cam.2019.112607
- Christopher McCord, Mappings and homological properties in the Conley index theory, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 175–198. MR 967637, DOI 10.1017/S014338570000941X
- Tomoyuki Miyaji, PawełPilarczyk, Marcio Gameiro, Hiroshi Kokubu, and Konstantin Mischaikow, A study of rigorous ODE integrators for multi-scale set-oriented computations, Appl. Numer. Math. 107 (2016), 34–47. MR 3504856, DOI 10.1016/j.apnum.2016.04.005
- Clark Robinson, Dynamical systems, 2nd ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1999. Stability, symbolic dynamics, and chaos. MR 1792240
- Robert Szczelina and Piotr Zgliczyński, A homoclinic orbit in a planar singular ODE—a computer assisted proof, SIAM J. Appl. Dyn. Syst. 12 (2013), no. 3, 1541–1565. MR 3097025, DOI 10.1137/120901271
- Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. MR 1301779, DOI 10.1007/978-1-4612-0873-0
- Jan Bouwe van den Berg, Jason D. Mireles-James, Jean-Philippe Lessard, and Konstantin Mischaikow, Rigorous numerics for symmetric connecting orbits: even homoclinics of the Gray-Scott equation, SIAM J. Math. Anal. 43 (2011), no. 4, 1557–1594. MR 2821596, DOI 10.1137/100812008
- Akitoshi Takayasu, Kaname Matsue, Takiko Sasaki, Kazuaki Tanaka, Makoto Mizuguchi, and Shin’ichi Oishi, Numerical validation of blow-up solutions of ordinary differential equations, J. Comput. Appl. Math. 314 (2017), 10–29. MR 3575546, DOI 10.1016/j.cam.2016.10.013
- Jan Bouwe van den Berg, Jason D. Mireles James, and Christian Reinhardt, Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra, J. Nonlinear Sci. 26 (2016), no. 4, 1055–1095. MR 3518609, DOI 10.1007/s00332-016-9298-5
- Daniel Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof, Found. Comput. Math. 6 (2006), no. 4, 495–535. MR 2271217, DOI 10.1007/s10208-005-0201-2
- Daniel Wilczak and Piotr Zgliczyński, Topological method for symmetric periodic orbits for maps with a reversing symmetry, Discrete Contin. Dyn. Syst. 17 (2007), no. 3, 629–652. MR 2276430, DOI 10.3934/dcds.2007.17.629
- Piotr Zgliczynski, $C^1$ Lohner algorithm, Found. Comput. Math. 2 (2002), no. 4, 429–465. MR 1930946, DOI 10.1007/s102080010025
- Piotr Zgliczyński, Covering relations, cone conditions and the stable manifold theorem, J. Differential Equations 246 (2009), no. 5, 1774–1819. MR 2494688, DOI 10.1016/j.jde.2008.12.019
- Piotr Zgliczyński and Marian Gidea, Covering relations for multidimensional dynamical systems, J. Differential Equations 202 (2004), no. 1, 32–58. MR 2060531, DOI 10.1016/j.jde.2004.03.013
- Piotr Zgliczyński and Konstantin Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math. 1 (2001), no. 3, 255–288. MR 1838755, DOI 10.1007/s102080010010
Bibliographic Information
- Kaname Matsue
- Affiliation: Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan; and International Institute for Carbon-Neutral Energy Research (WPI-I$^2$CNER), Kyushu University, Fukuoka 819-0395, Japan
- Email: kmatsue@imi.kyushu-u.ac.jp
- Received by editor(s): March 10, 2020
- Published electronically: August 14, 2023
- Additional Notes: The author was partially supported by Program for Promoting the reform of national universities (Kyushu University), Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, World Premier International Research Center Initiative (WPI), MEXT, Japan, and JSPS Grant-in-Aid for Young Scientists (B) (No. JP17K14235).
- © Copyright 2023 American Mathematical Society
- Journal: Sugaku Expositions 36 (2023), 221-253
- MSC (2020): Primary 54C40, 14E20; Secondary 46E25, 20C20
- DOI: https://doi.org/10.1090/suga/483