Properties of trajectories of a multifractional Rosenblatt process
Author:
Georgiĭ Shevchenko
Translated by:
N. Semenov
Journal:
Theor. Probability and Math. Statist. 83 (2011), 163-173
MSC (2010):
Primary 60G22; Secondary 60J55, 60B10
DOI:
https://doi.org/10.1090/S0094-9000-2012-00849-1
Published electronically:
February 2, 2012
MathSciNet review:
2790492
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: A Rosenblatt process and its multifractional counterpart are considered. For a multifractional Rosenblatt process, we investigate the local properties of its trajectories, namely the continuity and localizability. We prove the existence of square integrable local times for both processes.
References
- J. M. P. Albin, A note on Rosenblatt distributions, Statist. Probab. Lett. 40 (1998), no. 1, 83–91. MR 1650532, DOI https://doi.org/10.1016/S0167-7152%2898%2900109-6
- Simeon M. Berman, Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277–299. MR 239652, DOI https://doi.org/10.1090/S0002-9947-1969-0239652-5
- R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 27–52. MR 550122, DOI https://doi.org/10.1007/BF00535673
- A. M. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 2, vi, 67–116 (English, with French summary). MR 414802
- Yuliya S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, vol. 1929, Springer-Verlag, Berlin, 2008. MR 2378138
- Giovanni Peccati and Murad S. Taqqu, Wiener chaos: moments, cumulants and diagrams, Bocconi & Springer Series, vol. 1, Springer, Milan; Bocconi University Press, Milan, 2011. A survey with computer implementation; Supplementary material available online. MR 2791919
- Vladas Pipiras, Wavelet-type expansion of the Rosenblatt process, J. Fourier Anal. Appl. 10 (2004), no. 6, 599–634. MR 2105535, DOI https://doi.org/10.1007/s00041-004-3004-y
- M. Rosenblatt, Independence and dependence, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 431–443. MR 0133863
- Gennady Samorodnitsky and Murad S. Taqqu, Stable non-Gaussian random processes, Stochastic Modeling, Chapman & Hall, New York, 1994. Stochastic models with infinite variance. MR 1280932
- Murad S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 287–302. MR 400329, DOI https://doi.org/10.1007/BF00532868
- Murad S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 53–83. MR 550123, DOI https://doi.org/10.1007/BF00535674
- Soledad Torres and Ciprian A. Tudor, Donsker type theorem for the Rosenblatt process and a binary market model, Stoch. Anal. Appl. 27 (2009), no. 3, 555–573. MR 2523182, DOI https://doi.org/10.1080/07362990902844371
- Ciprian A. Tudor, Analysis of the Rosenblatt process, ESAIM Probab. Stat. 12 (2008), 230–257. MR 2374640, DOI https://doi.org/10.1051/ps%3A2007037
- Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726
References
- J. Albin, A note on Rosenblatt distributions, Stat. Probab. Lett. 40 (1998), no. 1, 83–91. MR 1650532 (2000b:60101)
- S. M. Berman, Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277–299. MR 0239652 (39:1009)
- R. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 27–52. MR 550122 (81i:60019)
- A. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement, Ann. Inst. Fourier 24 (1974), no. 2, 67–116. MR 0414802 (54:2894)
- Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics, vol. 1929, Springer, Berlin, 2008. MR 2378138 (2008m:60064)
- G. Peccati and M. S. Taqqu, Wiener Chaos: Moments, Cumulants and Diagrams. A Survey with Computer Implementation, Springer-Verlag, Italy, Milan–Dordrecht–Heidelberg–London–New York, 2011. MR 2791919
- V. Pipiras, Wavelet-type expansion of the Rosenblatt process, J. Fourier Anal. Appl. 10 (2004), no. 6, 599–634. MR 2105535 (2005i:60076)
- M. Rosenblatt, Independence and dependence, Proc. 4th Berkeley Symp. Math. Stat. Probab., vol. 2, 1961, pp. 431–443. MR 0133863 (24:A3687)
- G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Stochastic Modeling, Chapman & Hall, New York, 1994. MR 1280932 (95f:60024)
- M. S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheor. Verw. Geb. 31 (1975), 287–302. MR 0400329 (53:4164)
- M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 53–83. MR 550123 (81i:60020)
- S. Torres and C. A. Tudor, Donsker type theorem for the Rosenblatt process and a binary market model, Stochastic Anal. Appl. 27 (2009), no. 3, 555–573. MR 2523182 (2010g:60075)
- C. A. Tudor, Analysis of the Rosenblatt process, ESAIM, Probab. Stat. 12 (2008), 230–257. MR 2374640 (2008m:60067)
- Svante Janson, Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726 (99f:60082)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2010):
60G22,
60J55,
60B10
Retrieve articles in all journals
with MSC (2010):
60G22,
60J55,
60B10
Additional Information
Georgiĭ Shevchenko
Affiliation:
Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 2, Kiev 03127, Ukraine
Email:
zhora@univ.kiev.ua
Keywords:
Rosenblatt process,
multiple stochastic integral,
local time,
localizability,
fractional Brownian motion
Received by editor(s):
August 28, 2010
Published electronically:
February 2, 2012
Additional Notes:
The author is grateful to the European Commission for a support in the framework of the program “Marie Curie Actions”, Grant # PIRSES-GA-2008-230804
Article copyright:
© Copyright 2012
American Mathematical Society