Parameter estimation for reciprocal gamma Ornstein-Uhlenbeck type processes
Authors:
N. Leonenko, L. Sakhno and N. Šuvak
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 86 (2012).
Journal:
Theor. Probability and Math. Statist. 86 (2013), 137-154
MSC (2010):
Primary 60G10, 60J60, 62M05, 62M15
DOI:
https://doi.org/10.1090/S0094-9000-2013-00894-1
Published electronically:
August 20, 2013
MathSciNet review:
2986455
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider parameter estimation for a process of Ornstein-Uhlenbeck type with reciprocal gamma marginal distribution, to be called reciprocal gamma Ornstein-Uhlenbeck (RGOU) process. We derive minimum contrast estimators of unknown parameters based on both the discrete and the continuous observations from the process as well as moments based estimators based on discrete observations. We prove that proposed estimators are consistent and asymptotically normal. The explicit forms of the asymptotic covariance matrices are determined by using the higher order spectral densities and cumulants of the RGOU process.
- 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, The National Bureau of standards, 1964.
- 2. V. V. Anh, C. C. Heyde, and N. N. Leonenko, Dynamic models of long-memory processes driven by Lévy noise, J. Appl. Probab. 39 (2002), no. 4, 730–747. MR 1938167, https://doi.org/10.1239/jap/1037816015
- 3. V. V. Anh, N. N. Leonenko, and L. M. Sakhno, Quasi-likelihood-based higher-order spectral estimation of random fields with possible long-range dependence, J. Appl. Probab. 41A (2004), 35–53. Stochastic methods and their applications. MR 2057564, https://doi.org/10.1017/s0021900200112197
- 4. V. V. Anh, N. N. Leonenko, and L. M. Sakhno, On a class of minimum contrast estimators for fractional stochastic processes and fields, J. Statist. Plann. Inference 123 (2004), no. 1, 161–185. MR 2058127, https://doi.org/10.1016/S0378-3758(03)00136-8
- 5. V. V. Anh, N. N. Leonenko, and L. M. Sakhno, Minimum contrast estimation of random processes based on information of second and third orders, J. Statist. Plann. Inference 137 (2007), no. 4, 1302–1331. MR 2301481, https://doi.org/10.1016/j.jspi.2006.03.001
- 6. Florin Avram, Nikolai Leonenko, and Ludmila Sakhno, On a Szegő type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields, ESAIM Probab. Stat. 14 (2010), 210–255. MR 2741966, https://doi.org/10.1051/ps:2008031
- 7. O. E. Barndorff-Nielsen, J. L. Jensen, and M. Sørensen, Some stationary processes in discrete and continuous time, Adv. in Appl. Probab. 30 (1998), no. 4, 989–1007. MR 1671092, https://doi.org/10.1239/aap/1035228204
- 8. Bo Martin Bibby, Ib Michael Skovgaard, and Michael Sørensen, Diffusion-type models with given marginal distribution and autocorrelation function, Bernoulli 11 (2005), no. 2, 191–220. MR 2132002, https://doi.org/10.3150/bj/1116340291
- 9. O. Barndorff-Nielsen and Christian Halgreen, Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 38 (1977), no. 4, 309–311. MR 436260, https://doi.org/10.1007/BF00533162
- 10. Ole E. Barndorff-Nielsen and Neil Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001), no. 2, 167–241. MR 1841412, https://doi.org/10.1111/1467-9868.00282
- 11. Jean Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR 1406564
- 12. Peter J. Brockwell, Richard A. Davis, and Yu Yang, Estimation for nonnegative Lévy-driven Ornstein-Uhlenbeck processes, J. Appl. Probab. 44 (2007), no. 4, 977–989. MR 2382939, https://doi.org/10.1239/jap/1197908818
- 13. Valentine Genon-Catalot, Thierry Jeantheau, and Catherine Larédo, Stochastic volatility models as hidden Markov models and statistical applications, Bernoulli 6 (2000), no. 6, 1051–1079. MR 1809735, https://doi.org/10.2307/3318471
- 14. P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Probability and Mathematical Statistics. MR 624435
- 15. Hossein Hassani, Sum of the sample autocorrelation function, Random Oper. Stoch. Equ. 17 (2009), no. 2, 125–130. MR 2560860, https://doi.org/10.1515/ROSE.2009.008
- 16. Christopher C. Heyde, Quasi-likelihood and its application, Springer Series in Statistics, Springer-Verlag, New York, 1997. A general approach to optimal parameter estimation. MR 1461808
- 17. C. C. Heyde and N. N. Leonenko, Student processes, Adv. in Appl. Probab. 37 (2005), no. 2, 342–365. MR 2144557, https://doi.org/10.1239/aap/1118858629
- 18. I. A. Ibragimov, Estimation of parameters of the spectral density of a stationary process by the method of maximum likelihood, Teor. Verojatnost. i Primenen. 12 (1967), 128–134 (Russian, with English summary). MR 0228095
- 19. G. Jongbloed, F. H. van der Meulen, and A. W. van der Vaart, Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes, Bernoulli 11 (2005), no. 5, 759–791. MR 2172840, https://doi.org/10.3150/bj/1130077593
- 20. Zbigniew J. Jurek, Remarks on the selfdecomposability and new examples, Demonstratio Math. 34 (2001), no. 2, 241–250. MR 1833180
- 21. Zbigniew J. Jurek and J. David Mason, Operator-limit distributions in probability theory, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1993. A Wiley-Interscience Publication. MR 1243181
- 22. Samuel Karlin and Howard M. Taylor, A first course in stochastic processes, 2nd ed., Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0356197
- 23. N. N. Leonenko and L. M. Sakhno, On the Whittle estimators for some classes of continuous-parameter random processes and fields, Statist. Probab. Lett. 76 (2006), no. 8, 781–795. MR 2266092, https://doi.org/10.1016/j.spl.2005.10.010
- 24. Hiroki Masuda, On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process, Bernoulli 10 (2004), no. 1, 97–120. MR 2044595, https://doi.org/10.3150/bj/1077544605
- 25. K. Pearson, Tables for Statisticians and Biometricians, Cambridge University Press, Cambridge, 1914.
- 26. K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999.
- 27. Robert J. Serfling, Approximation theorems of mathematical statistics, John Wiley & Sons, Inc., New York, 1980. Wiley Series in Probability and Mathematical Statistics. MR 595165
- 28. Konstantinos Spiliopoulos, Method of moments estimation of Ornstein-Uhlenbeck processes driven by general Lévy process, Ann. I.S.U.P. 53 (2009), no. 2-3, 3–17. MR 2643269
- 29. ShuGuang Sun and XinSheng Zhang, Empirical likelihood estimation of discretely sampled processes of OU type, Sci. China Ser. A 52 (2009), no. 5, 908–931. MR 2504998, https://doi.org/10.1007/s11425-008-0159-z
- 30. Luis Valdivieso, Wim Schoutens, and Francis Tuerlinckx, Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type, Stat. Inference Stoch. Process. 12 (2009), no. 1, 1–19. MR 2486113, https://doi.org/10.1007/s11203-008-9021-8
- 31. Viktor Witkovský, Exact distribution of positive linear combinations of inverted chi-square random variables with odd degrees of freedom, Statist. Probab. Lett. 56 (2002), no. 1, 45–50. MR 1881529, https://doi.org/10.1016/S0167-7152(01)00165-1
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G10, 60J60, 62M05, 62M15
Retrieve articles in all journals with MSC (2010): 60G10, 60J60, 62M05, 62M15
Additional Information
N. Leonenko
Affiliation:
School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF244AG, UK
Email:
LeonenkoN@Cardiff.ac.uk
L. Sakhno
Affiliation:
Department of Probability, Statistics and Actuarial Mathematics, Mechanics and Mathematics Faculty, Taras Shevchenko National University of Kyiv, 64, Volodymyrs’ka St., 01601 Kyiv, Ukraine
Email:
lms@univ.kiev.ua
N. Šuvak
Affiliation:
Department of Mathematics, University of Osijek, Gajev Trg 6, HR-31 000 Osijek, Croatia
Email:
nsuvak@mathos.hr
DOI:
https://doi.org/10.1090/S0094-9000-2013-00894-1
Keywords:
Ornstein--Uhlenbeck type process,
reciprocal gamma distribution,
infinite divisibility,
self-decomposability,
parameter estimation,
method of moments,
minimum contrast method,
Ibragimov functionals,
Whittle functionals
Received by editor(s):
November 20, 2030
Published electronically:
August 20, 2013
Additional Notes:
Partly supported by the Commission of the European Communities grant PIRSES-GA-2008-230804 within the programme ‘Marie Curie Actions’ and the grant of the United Kingdom Association of Alumni and Friends of Croatian Universities (AMAC-UK)
Article copyright:
© Copyright 2013
American Mathematical Society