Convergence results for the time-changed fractional Ornstein–Uhlenbeck processes
Authors:
G. Ascione, Yu. Mishura and E. Pirozzi
Journal:
Theor. Probability and Math. Statist. 104 (2021), 23-47
MSC (2020):
Primary 60G22; Secondary 60F17, 35R11
DOI:
https://doi.org/10.1090/tpms/1143
Published electronically:
September 24, 2021
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this paper we study some convergence results concerning the one-dimensional distribution of a time-changed fractional Ornstein–Uhlenbeck process. In particular, we establish that, despite the time change, the process admits a Gaussian limit random variable. On the other hand, we prove that the process converges towards the time-changed Ornstein–Uhlenbeck as the Hurst index $H \to 1/2^+$, with locally uniform convergence of one-dimensional distributions. Moreover, we also achieve convergence in the Skorokhod $J_1$-topology of the time-changed fractional Ornstein–Uhlenbeck process as $H \to 1/2^+$ in the space of càdlàg functions. Finally, we exploit some convergence properties of mild solutions of a generalized Fokker–Planck equation associated to the aforementioned processes, as $H \to 1/2^+$.
References
- V. Anh and A. Inoue, Financial markets with memory. I. Dynamic models, Stoch. Anal. Appl. 23 (2005), no. 2, 275–300. MR 2130350, DOI 10.1081/SAP-200050096
- Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588, DOI 10.1007/978-3-0348-5075-9
- Giacomo Ascione, Nikolai Leonenko, and Enrica Pirozzi, Time-non-local Pearson diffusions, J. Stat. Phys. 183 (2021), no. 3, Paper No. 48, 42. MR 4270777, DOI 10.1007/s10955-021-02786-2
- Giacomo Ascione, Yuliya Mishura, and Enrica Pirozzi, Fractional Ornstein-Uhlenbeck process with stochastic forcing, and its applications, Methodol. Comput. Appl. Probab. 23 (2021), no. 1, 53–84. MR 4224905, DOI 10.1007/s11009-019-09748-y
- Giacomo Ascione, Yuliya Mishura, and Enrica Pirozzi, Time-changed fractional Ornstein-Uhlenbeck process, Fract. Calc. Appl. Anal. 23 (2020), no. 2, 450–483. MR 4098657, DOI 10.1515/fca-2020-0022
- —, The Fokker-Planck equation for the time-changed fractional Ornstein-Uhlenbeck process, P. Roy. Soc. Edinb. A (2021), Accepted.
- G. Ascione and B. Toaldo, A semi-Markov Leaky Integrate-and-Fire model, Math. 7 (2019), no. 11, 1022.
- Jean Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR 1406564
- —, Subordinators: Examples and applications, Lectures on Probability Theory and Statistics, Springer, 1999, pp. 1–91.
- K. V. Buchak and L. M. Sakhno, On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators, Teor. Ĭmovīr. Mat. Stat. 98 (2018), 87–99 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 98 (2019), 91–104. MR 3824680, DOI 10.1090/tpms/1064
- Meredith N. Burr, Continuous-time random walks, their scaling limits, and connections with stochastic integration, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Tufts University. MR 2753094
- Patrick Cheridito, Hideyuki Kawaguchi, and Makoto Maejima, Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab. 8 (2003), no. 3, 14. MR 1961165, DOI 10.1214/EJP.v8-125
- Erhan Çinlar, Markov additive processes. I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972), 85–93; ibid. 24 (1972), 95–121. MR 329047, DOI 10.1007/BF00532536
- —, Markov additive processes. II, Z. Wahrscheinlichkeit 24 (1972), no. 2, 95–121.
- Janusz Gajda and Agnieszka Wyłomańska, Time-changed Ornstein-Uhlenbeck process, J. Phys. A 48 (2015), no. 13, 135004, 18. MR 3323360, DOI 10.1088/1751-8113/48/13/135004
- H. van Haeringen and L. P. Kok, Table errata: Table of integrals, series, and products [corrected and enlarged edition, Academic Press, New York, 1980; MR 81g:33001] by I. S. Gradshteyn [I. S. Gradshteĭn] and I. M. Ryzhik, Math. Comp. 39 (1982), no. 160, 747–757. MR 669666, DOI 10.1090/S0025-5718-1982-0669666-2
- Marjorie G. Hahn, Kei Kobayashi, Jelena Ryvkina, and Sabir Umarov, On time-changed Gaussian processes and their associated Fokker-Planck-Kolmogorov equations, Electron. Commun. Probab. 16 (2011), 150–164. MR 2783336, DOI 10.1214/ECP.v16-1620
- Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL, 2017.
- Sixian Jin and Kei Kobayashi, Strong approximation of time-changed stochastic differential equations involving drifts with random and non-random integrators, BIT 61 (2021), no. 3, 829–857. MR 4292449, DOI 10.1007/s10543-021-00852-5
- Terhi Kaarakka and Paavo Salminen, On fractional Ornstein-Uhlenbeck processes, Commun. Stoch. Anal. 5 (2011), no. 1, 121–133. MR 2808539, DOI 10.31390/cosa.5.1.08
- Kei Kobayashi, Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations, J. Theoret. Probab. 24 (2011), no. 3, 789–820. MR 2822482, DOI 10.1007/s10959-010-0320-9
- John Lamperti, On convergence of stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 430–435. MR 143245, DOI 10.1090/S0002-9947-1962-0143245-1
- Nikolai N. Leonenko, Mark M. Meerschaert, and Alla Sikorskii, Fractional Pearson diffusions, J. Math. Anal. Appl. 403 (2013), no. 2, 532–546. MR 3037487, DOI 10.1016/j.jmaa.2013.02.046
- Nikolai N. Leonenko, Mark M. Meerschaert, and Alla Sikorskii, Correlation structure of fractional Pearson diffusions, Comput. Math. Appl. 66 (2013), no. 5, 737–745. MR 3089382, DOI 10.1016/j.camwa.2013.01.009
- Mark M. Meerschaert and Hans-Peter Scheffler, Triangular array limits for continuous time random walks, Stochastic Process. Appl. 118 (2008), no. 9, 1606–1633. MR 2442372, DOI 10.1016/j.spa.2007.10.005
- Mark M. Meerschaert and Alla Sikorskii, Stochastic models for fractional calculus, De Gruyter Studies in Mathematics, vol. 43, Walter de Gruyter & Co., Berlin, 2012. MR 2884383
- M. M. Meerschaert and P. Straka, Inverse stable subordinators, Math. Model. Nat. Phenom. 8 (2013), no. 2, 1–16. MR 3049524, DOI 10.1051/mmnp/20138201
- J. B. Mijena, Correlation structure of time-changed fractional Brownian motion, arXiv preprint arXiv:1408.4502 (2014).
- Yu. S. Mīshura, V. Ī. Pīterbarg, K. V. Ral′chenko, and A. Yu. Yurchenko-Titarenko, Stochastic representation and pathwise properties of a fractional Cox-Ingersoll-Ross process, Teor. Ĭmovīr. Mat. Stat. 97 (2017), 157–170 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 97 (2018), 167–182. MR 3746006, DOI 10.1090/tpms/1055
- Yuliya Mishura and Anton Yurchenko-Tytarenko, Fractional Cox-Ingersoll-Ross process with non-zero $\ll \textrm {mean}\gg$, Mod. Stoch. Theory Appl. 5 (2018), no. 1, 99–111. MR 3784040, DOI 10.15559/18-vmsta97
- Y. Sakai, S. Funahashi, and S. Shinomoto, Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons, Neural Networks 12 (1999), no. 7-8, 1181–1190.
- Mladen Savov and Bruno Toaldo, Semi-Markov processes, integro-differential equations and anomalous diffusion-aggregation, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 4, 2640–2671 (English, with English and French summaries). MR 4164851, DOI 10.1214/20-AIHP1053
- Enrico Scalas and Noèlia Viles, A functional limit theorem for stochastic integrals driven by a time-changed symmetric $\alpha$-stable Lévy process, Stochastic Process. Appl. 124 (2014), no. 1, 385–410. MR 3131299, DOI 10.1016/j.spa.2013.08.005
- René L. Schilling, Renming Song, and Zoran Vondraček, Bernstein functions, 2nd ed., De Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, 2012. Theory and applications. MR 2978140, DOI 10.1515/9783110269338
- S. Shinomoto, Y. Sakai, and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Comput. 11 (1999), no. 4, 935–951.
- D. Silvestrov, Limit theorems for randomly stopped stochastic processes, J. Math. Sci. (N.Y.) 138 (2006), no. 1, 5467–5471. MR 2261597, DOI 10.1007/s10958-006-0313-5
- Bruno Toaldo, Convolution-type derivatives, hitting-times of subordinators and time-changed $C_0$-semigroups, Potential Anal. 42 (2015), no. 1, 115–140. MR 3297989, DOI 10.1007/s11118-014-9426-5
- Haruo Totoki, A method of construction of measures on function spaces and its applications to stochastic processes, Mem. Fac. Sci. Kyushu Univ. Ser. A 15 (1961/62), 178–190. MR 138127, DOI 10.2206/kyushumfs.15.178
- Aleksander Weron and RafałWeron, Computer simulation of Lévy $\alpha$-stable variables and processes, Chaos—the interplay between stochastic and deterministic behaviour (Karpacz, 1995) Lecture Notes in Phys., vol. 457, Springer, Berlin, 1995, pp. 379–392. MR 1452625, DOI 10.1007/3-540-60188-0_{6}7
- Ward Whitt, Stochastic-process limits, Springer Series in Operations Research, Springer-Verlag, New York, 2002. An introduction to stochastic-process limits and their application to queues. MR 1876437
- David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. MR 1155402, DOI 10.1017/CBO9780511813658
References
- V. Anh and A. Inoue, Financial markets with memory I: Dynamic models, Stoch. Anal. Appl. 23 (2005), no. 2, 275–300. MR 2130350
- W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Mono. Math., Birkhäuser, Basel, 2001. MR 1886588
- G. Ascione, N. Leonenko, and E. Pirozzi, Non-local Pearson diffusions, arXiv preprint arXiv:2009.12086 (2020). MR 4270777
- G. Ascione, Y. Mishura, and E. Pirozzi, Fractional Ornstein-Uhlenbeck process with stochastic forcing, and its applications, Methodol. Comput. Appl. (2019), 1–32. MR 4224905
- —, Time-changed fractional Ornstein-Uhlenbeck process, Fract. Calc. Appl. Anal. 23 (2020), no. 2, 450–483. MR 4098657
- —, The Fokker-Planck equation for the time-changed fractional Ornstein-Uhlenbeck process, P. Roy. Soc. Edinb. A (2021), Accepted.
- G. Ascione and B. Toaldo, A semi-Markov Leaky Integrate-and-Fire model, Math. 7 (2019), no. 11, 1022.
- J. Bertoin, Lévy Processes, vol. 121, Cambridge University Press, 1996. MR 1406564
- —, Subordinators: Examples and applications, Lectures on Probability Theory and Statistics, Springer, 1999, pp. 1–91.
- K. Buchak and L. Sakhno, On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators, Th. Probab. Math. Stat. 98 (2019), 91–104. MR 3824680
- M. N. Burr, Weak convergence of stochastic integrals driven by continuous-time random walks, arXiv preprint arXiv:1110.0216 (2011). MR 2753094
- P. Cheridito, H. Kawaguchi, and M. Maejima, Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab. 8 (2003), 3–14. MR 1961165
- E. Çinlar, Markov additive processes. I, Z. Wahrscheinlichkeit 24 (1972), no. 2, 85–93. MR 329047
- —, Markov additive processes. II, Z. Wahrscheinlichkeit 24 (1972), no. 2, 95–121.
- J. Gajda and A. Wyłomańska, Time-changed Ornstein–Uhlenbeck process, J. Phys. A-Math. Theor. 48 (2015), no. 13, 135004. MR 3323360
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, 2014. MR 669666
- M. Hahn, J. Ryvkina, K. Kobayashi, and S. Umarov, On time-changed Gaussian processes and their associated Fokker-Planck-Kolmogorov equations, Electron. Commun. Prob. 16 (2011), 150–164. MR 2783336
- Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL, 2017.
- S. Jin and K. Kobayashi, Strong approximation of time-changed stochastic differential equations involving drifts with random and non-random integrators, arXiv preprint arXiv:2006.10926 (2020). MR 4292449
- T. Kaarakka and P. Salminen, On fractional Ornstein-Uhlenbeck processes, Commun. Stoch. Anal. 5 (2011), no. 1, 8. MR 2808539
- K. Kobayashi, Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations, J. Theor. Probab. 24 (2011), no. 3, 789–820. MR 2822482
- J. Lamperti, On convergence of stochastic processes, T. Am. Math. Soc. 104 (1962), no. 3, 430–435. MR 143245
- N. Leonenko, M. M. Meerschaert, and A. Sikorskii, Fractional Pearson diffusions, J. Math. Anal. Appl. 403 (2013), no. 2, 532–546. MR 3037487
- N. N. Leonenko, M. M. Meerschaert, and A. Sikorskii, Correlation structure of fractional Pearson diffusions, Comput. Math. Appl. 66 (2013), no. 5, 737–745. MR 3089382
- M. M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random walks, Stoch. Proc. Appl. 118 (2008), no. 9, 1606–1633. MR 2442372
- M. M. Meerschaert and A. Sikorskii, Stochastic models for fractional calculus, vol. 43, Walter de Gruyter, 2011. MR 2884383
- M. M. Meerschaert and P. Straka, Inverse stable subordinators, Math. Model. Nat. Pheno. 8 (2013), no. 2, 1–16. MR 3049524
- J. B. Mijena, Correlation structure of time-changed fractional Brownian motion, arXiv preprint arXiv:1408.4502 (2014).
- Y. Mishura, V. Piterbarg, K. Ralchenko, and A. Yurchenko-Tytarenko, Stochastic representation and path properties of a fractional Cox–Ingersoll–Ross process, Th. Probab. Math. Stat. 97 (2018), 167–182. MR 3746006
- Y. Mishura and A. Yurchenko-Tytarenko, Fractional Cox–Ingersoll–Ross process with non-zero mean, Mod. Stoch. Th. Appl. 5 (2018), no. 1, 99–111. MR 3784040
- Y. Sakai, S. Funahashi, and S. Shinomoto, Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons, Neural Networks 12 (1999), no. 7-8, 1181–1190.
- M. Savov and B. Toaldo, Semi-Markov processes, integro-differential equations and anomalous diffusion-aggregation, Ann. I. H. Poincaré-Pr. 56 (2020), no. 4, 2640–2671. MR 4164851
- E. Scalas and N. Viles, A functional limit theorem for stochastic integrals driven by a time-changed symmetric $\alpha$-stable Lévy process, Stoch. Proc. Appl. 124 (2014), no. 1, 385–410. MR 3131299
- R. L. Schilling, R. Song, and Z. Vondracek, Bernstein Functions: Theory and Applications, vol. 37, Walter de Gruyter, 2012. MR 2978140
- S. Shinomoto, Y. Sakai, and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Comput. 11 (1999), no. 4, 935–951.
- D. S. Silvestrov, Limit theorems for randomly stopped stochastic processes, Springer Science & Business Media, 2012. MR 2261597
- B. Toaldo, Convolution-type derivatives, hitting-times of subordinators and time-changed ${C}_0$-semigroups, Potential Anal. 42 (2015), no. 1, 115–140. MR 3297989
- H. Totoki, A method of construction of measures on function spaces and its applications to stochastic processes, Mem. Fac. Sci., Kyushu Univ. A Math. 15 (1962), no. 2, 178–190. MR 138127
- A. Weron and R. Weron, Computer simulation of Lévy $\alpha$-stable variables and processes, Chaos—The Interplay Between Stochastic and Deterministic Behaviour, Springer, 1995, pp. 379–392. MR 1452625
- W. Whitt, Stochastic-Process Limits: an Introduction to Stochastic-Process Limits and Their Application to Queues, Springer Science & Business Media, 2002. MR 1876437
- D. Williams, Probability with Martingales, Cambridge University Press, 1991. MR 1155402
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60G22,
60F17,
35R11
Retrieve articles in all journals
with MSC (2020):
60G22,
60F17,
35R11
Additional Information
G. Ascione
Affiliation:
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Universita degli Studi di Napoli Federico II, 80126 Napoli, Italy
Email:
giacomo.ascione@unina.it
Yu. Mishura
Affiliation:
Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska 64, Kyiv 01601, Ukraine
Email:
myus@univ.kiev.ua
E. Pirozzi
Affiliation:
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Universita degli Studi di Napoli Federico II, 80126 Napoli, Italy
Email:
enrica.pirozzi@unina.it
Keywords:
Fractional Brownian motion,
subordinator,
weak convergence in Skorokhod space,
generalized Fokker–Planck equation
Received by editor(s):
October 19, 2020
Published electronically:
September 24, 2021
Additional Notes:
This research was partially supported by MIUR - PRIN 2017, project Stochastic Models for Complex Systems, no. 2017JFFHSH, by Gruppo Nazionale per il Calcolo Scientifico (GNCS-INdAM), by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA-INdAM). The 2nd author was partially supported by the project STORM: Stochastics for Time-Space Risk Models, funded by the University of Oslo and the Research Council of Norway within the ToppForsk call, N. 274410, and by the research project Exact formulas, estimates, asymptotic properties and statistical analysis of complex evolutionary systems with many degrees of freedom, funded by the Ministry of science and education of Ukraine, N. 0119U100317
Article copyright:
© Copyright 2021
Taras Shevchenko National University of Kyiv