On existence and uniqueness of the solution for stochastic partial differential equations
Authors:
B. Avelin and L. Viitasaari
Journal:
Theor. Probability and Math. Statist. 104 (2021), 49-60
MSC (2020):
Primary 60H15; Secondary 60G15, 35C15, 35K58, 35S10
DOI:
https://doi.org/10.1090/tpms/1144
Published electronically:
September 24, 2021
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this article we consider existence and uniqueness of the solutions to a large class of stochastic partial differential equations of the form $\partial _t u = L_x u + b(t,u)+\sigma (t,u)\dot {W}$, driven by a Gaussian noise $\dot {W}$, white in time, and with spatial correlations given by a generic covariance $\gamma$. We provide natural conditions under which classical Picard iteration procedure provides a unique solution. We illustrate the applicability of our general result by providing several interesting particular choices for the operator $L_x$ under which our existence and uniqueness results hold. In particular, we show that Dalang condition given in [5] is sufficient in the case of many parabolic and hypoelliptic operators $L_x$.
References
- D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890–896. MR 217444, DOI 10.1090/S0002-9904-1967-11830-5
- O. Assaad, D. Nualart, C. A. Tudor, and L. Viitasaari, Quantitative normal approximations for the stochastic fractional heat equation, Stoch. PDE: Anal. Comp. (2021). https://doi.org/10.1007/s40072-021-00198-7.
- Benny Avelin, Luca Capogna, Giovanna Citti, and Kaj Nyström, Harnack estimates for degenerate parabolic equations modeled on the subelliptic $p$-Laplacian, Adv. Math. 257 (2014), 25–65. MR 3187644, DOI 10.1016/j.aim.2014.02.018
- A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2363343
- Robert C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4 (1999), no. 6, 29. MR 1684157, DOI 10.1214/EJP.v4-43
- James Eells and Luc Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. MR 703510, DOI 10.1090/cbms/050
- Luis Escauriaza, Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form, Comm. Partial Differential Equations 25 (2000), no. 5-6, 821–845. MR 1759794, DOI 10.1080/03605300008821533
- Alberto Ferrero, Filippo Gazzola, and Hans-Christoph Grunau, Decay and eventual local positivity for biharmonic parabolic equations, Discrete Contin. Dyn. Syst. 21 (2008), no. 4, 1129–1157. MR 2399453, DOI 10.3934/dcds.2008.21.1129
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Avner Friedman, Stochastic differential equations and applications. Vol. 1, Probability and Mathematical Statistics, Vol. 28, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0494490
- Mohammud Foondun and Davar Khoshnevisan, On the stochastic heat equation with spatially-colored random forcing, Trans. Amer. Math. Soc. 365 (2013), no. 1, 409–458. MR 2984063, DOI 10.1090/S0002-9947-2012-05616-9
- Hans-Christoph Grunau, Nobuhito Miyake, and Shinya Okabe, Positivity of solutions to the Cauchy problem for linear and semilinear biharmonic heat equations, Adv. Nonlinear Anal. 10 (2021), no. 1, 353–370. MR 4131784, DOI 10.1515/anona-2020-0138
- Alessia Elisabetta Kogoj and Ermanno Lanconelli, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math. 1 (2004), no. 1, 51–80. MR 2088032, DOI 10.1007/s00009-004-0004-8
- K. Nyström and O. Sande, Extension properties and boundary estimates for a fractional heat operator, Nonlinear Anal. 140 (2016), 29–37. MR 3492726, DOI 10.1016/j.na.2016.02.027
- Juan Luis Vázquez, The mathematical theories of diffusion: nonlinear and fractional diffusion, Nonlocal and nonlinear diffusions and interactions: new methods and directions, Lecture Notes in Math., vol. 2186, Springer, Cham, 2017, pp. 205–278. MR 3588125
- Cédric Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009), no. 950, iv+141. MR 2562709, DOI 10.1090/S0065-9266-09-00567-5
- John B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR 876085, DOI 10.1007/BFb0074920
References
- T. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Am. Math. Soc. 73 (1967), no. 6, 890–896. MR 217444
- O. Assaad, D. Nualart, C. A. Tudor, and L. Viitasaari, Quantitative normal approximations for the stochastic fractional heat equation, Stoch. PDE: Anal. Comp. (2021). https://doi.org/10.1007/s40072-021-00198-7.
- B. Avelin, L. Capogna, G. Citti, and K. Nyström, Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian, Adv. Math. 257 (2014), 25–65. MR 3187644
- A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2363343
- R. Dalang, Extending the Martingale Measure Stochastic Integral With Applications to Spatially Homogeneous S.P.D.E.’s, Electron. J. Probab. 4 (1999), 1–29. MR 1684157
- J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Reg. Conf. Ser. in Math. vol. 50, American Mathematical Soc., Providence, RI, 1983. MR 703510
- L. Escauriaza, Bounds for the fundamental solutions of elliptic and parabolic equations: In memory of eugene fabes, Commun. Partial. Differ. 25 (2000), no. 5-6, 821–845. MR 1759794
- A. Ferrero, F. Gazzola, and H. C. Grunau, Decay and local eventual positivity for biharmonic parabolic equations, Discrete Contin. Dyn. Syst. Ser. A 21 (2008), no. 4, 1129–1157. MR 2399453
- A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- A. Friedman, Stochastic differential equations and applications. Vol. 1. Probability and Mathematical Statistics, Vol. 28, Academic Press, New York-London, 1975. MR 0494490
- M. Foondun and D. Khoshnevisan, On the stochastic heat equation with spatially-colored random forcing, Trans. Am. Math. Soc. 365 (2013), 409–458. MR 2984063
- H. C. Grunau, N. Miyake, and S. Okabe, Positivity of solutions to the Cauchy problem for linear and semilinear biharmonic heat equations, Adv. Nonlinear Anal. 10 (2020), no. 1, 353–370. MR 4131784
- A. E. Kogoj and E. Lanconelli, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math. 1 (2004), no. 1, 51–80. MR 2088032
- K. Nyström and O. Sande, Extension properties and boundary estimates for a fractional heat operator, Nonlinear Anal. 140 (2016), 29–37. MR 3492726
- J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion, Nonlocal and nonlinear diffusions and interactions: new methods and directions, Springer, Cham, 2017, pp. 205–278. MR 3588125
- C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009). MR 2562709
- J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, In: École d’été de probabilités de Saint-Flour, XIV—1984, 265–439. Lecture Notes in Math. 1180, Springer, Berlin, 1986. MR 876085
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60H15,
60G15,
35C15,
35K58,
35S10
Retrieve articles in all journals
with MSC (2020):
60H15,
60G15,
35C15,
35K58,
35S10
Additional Information
B. Avelin
Affiliation:
Department of Mathematics, Uppsala University, Sweden
MR Author ID:
916309
Email:
benny.avelin@math.uu.se
L. Viitasaari
Affiliation:
Department of Information and Service Management, Aalto University School of Business, Finland
Email:
lauri.viitasaari@iki.fi
Keywords:
Stochastic partial differential equations,
existence and uniqueness,
mild solution,
semilinear parabolic equations,
hypoelliptic equations
Received by editor(s):
April 15, 2021
Published electronically:
September 24, 2021
Additional Notes:
The first author was supported by the Swedish Research Council grant dnr: 2019-04098
Article copyright:
© Copyright 2021
Taras Shevchenko National University of Kyiv