A new class of self-adjoint boundary value problems
HTML articles powered by AMS MathViewer
- by William T. Reid PDF
- Trans. Amer. Math. Soc. 52 (1942), 381-425 Request permission
References
-
G. A. Bliss, A boundary value problem for a system of ordinary linear differential equations of the first order, these Transactions, vol. 28 (1926), pp. 561-589.
- Gilbert A. Bliss, Definitely self-adjoint boundary value problems, Trans. Amer. Math. Soc. 44 (1938), no. 3, 413–428. MR 1501974, DOI 10.1090/S0002-9947-1938-1501974-5 E. Goursat, Cours d’Analyse Mathématique, vol. 3, Paris, 1927. K. S. Hu, The problem of Bolza and its accessory boundary value problem, Contributions to the Calculus of Variations, 1931-1932, The University of Chicago Press, pp. 361-443. E. L. Ince, Ordinary Differential Equations, 1927.
- E. Kamke, Über die definiten selbstadjungierten Eigenwertaufgaben bei gewöhnlichen linearen Differentialgleichungen. I, Math. Z. 45 (1939), 759–787 (German). MR 1093, DOI 10.1007/BF01580316 M. Krein, Sur les opérateurs différentiels autoadjoints et leurs fonctions de Green symétriques, Recueil Mathématique, vol. 2 (44) (1937), pp. 1023-1070. J. Mercer, Functions of positive and negative type, and the connection with the theory of integral equations, Philosophical Transactions of the Royal Society, vol. 209 A (1909), pp. 415-446.
- William T. Reid, A Boundary Value Problem Associated with the Calculus of Variations, Amer. J. Math. 54 (1932), no. 4, 769–790. MR 1506937, DOI 10.2307/2371102
- William T. Reid, A system of ordinary linear differential equations with two-point boundary conditions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 508–521. MR 1501979, DOI 10.1090/S0002-9947-1938-1501979-4
- William T. Reid, Some remarks on linear differential systems, Bull. Amer. Math. Soc. 45 (1939), no. 6, 414–419. MR 1563996, DOI 10.1090/S0002-9904-1939-06995-4
Additional Information
- © Copyright 1942 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 52 (1942), 381-425
- MSC: Primary 36.0X
- DOI: https://doi.org/10.1090/S0002-9947-1942-0007191-3
- MathSciNet review: 0007191