The identity of weak and strong extensions of differential operators
HTML articles powered by AMS MathViewer
- by K. O. Friedrichs
- Trans. Amer. Math. Soc. 55 (1944), 132-151
- DOI: https://doi.org/10.1090/S0002-9947-1944-0009701-0
- PDF | Request permission
References
- Kurt Friedrichs, On Differential Operators in Hilbert Spaces, Amer. J. Math. 61 (1939), no. 2, 523–544. MR 1507392, DOI 10.2307/2371518 —, On hyperbolic differential operators, Bull. Amer. Math. Soc. Abstract 46-9-416 (1940) p. 754. M. Bôcher, On harmonic functions in two dimensions, Proceedings of the American Academy of Sciences vol. 41 (1905-1906).
- Griffith C. Evans, On the reduction of integro-differential equations, Trans. Amer. Math. Soc. 15 (1914), no. 4, 477–496. MR 1500991, DOI 10.1090/S0002-9947-1914-1500991-2 —, Fundamental points of potential theory, Rice Institute Pamphlets vol. 7 (1920) p. 274. Complements of potential theory. I, Amer. J. Math. vol. 55 (1933) p. 42. C. B. Morrey, Jr., A class of representations of manifolds. I, Amer. J. Math. vol. 55 (1933) p. 687.
- J. W. Calkin, Functions of several variables and absolute continuity. I, Duke Math. J. 6 (1940), 170–186. MR 1278, DOI 10.1215/S0012-7094-40-00614-7
- Norbert Wiener, The operational calculus, Math. Ann. 95 (1926), no. 1, 557–584. MR 1512294, DOI 10.1007/BF01206627 R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 2, p. 470. D. C. Lewis, Infinite systems of ordinary differential equations, Trans. Amer. Math. Soc. vol. 35 (1933) p. 808.
- Hermann Weyl, The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940), 411–444. MR 3331 K. Ogura, Tôhoku Math. J. vol. 16 (1919). J. von Neumann, Über adjungierte Funktionaloperatoren, Ann. of Math. vol. 33 (1932) p. 294.
- C. B. Morrey Jr., Functions of several variables and absolute continuity, II, Duke Math. J. 6 (1940), 187–215. MR 1279 —, On the solutions of quasilinear elliptic partial differential equations, Trans. Amer. Math. Soc. vol. 43 (1938) p. 126. Existence and differentiability theorems for the solutions of variational problems for multiple integrals, Bull. Amer. Math. Soc. vol. 46 (1940) p. 439.
Bibliographic Information
- © Copyright 1944 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 55 (1944), 132-151
- MSC: Primary 46.3X
- DOI: https://doi.org/10.1090/S0002-9947-1944-0009701-0
- MathSciNet review: 0009701