Orthogonality and linear functionals in normed linear spaces
HTML articles powered by AMS MathViewer
- by Robert C. James
- Trans. Amer. Math. Soc. 61 (1947), 265-292
- DOI: https://doi.org/10.1090/S0002-9947-1947-0021241-4
- PDF | Request permission
References
- Guido Ascoli, Sugli spazi lineari metrici e le loro varietà lineari, Ann. Mat. Pura Appl. 10 (1932), no. 1, 33–81 (Italian). MR 1553181, DOI 10.1007/BF02417133 S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- Garrett Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), no. 2, 169–172. MR 1545873, DOI 10.1215/S0012-7094-35-00115-6
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- Frederick A. Ficken, Note on the existence of scalar products in normed linear spaces, Ann. of Math. (2) 45 (1944), 362–366. MR 10255, DOI 10.2307/1969273
- Robert Fortet, Remarques sur les espaces uniformément convexes, C. R. Acad. Sci. Paris 210 (1940), 497–499. MR 2007
- R. Fortet, Remarques sur les espaces uniformément convexes, Bull. Soc. Math. France 69 (1941), 23–46 (French). MR 13225 M. Fréchet, Sur la notion de différentielle, J. Math. Pures Appl. vol. 16 (1937) pp. 233-250. —, Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espaces de Hilbert, Ann. of Math. vol. 36 (1935) pp. 705-718. V. Gantmakher and V. Šmulian, Sur les espaces linéaires dont la sphere unitaire est faiblement compacte, C. R. (Doklady) Acad. Sci. URSS. vol. 17 (1937) pp. 91-94.
- R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291–302. MR 12199
- P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719–723. MR 1503247, DOI 10.2307/1968653 H. Löwig, Komplexe Euklidische Räume von beliebiger endlicher oder transfiniter Dimensionzahl, Acta Litterarum Ac Scientiarum vol. 7 (1934-1935) pp. 1-33. S. Mazur, Über convexe Mengen in linearen normierten Räumen, Studia Mathematica vol. 4 (1933) pp. 70-84. —, Über schwache Konvergenz in den Räumen $({L^p})$, Studia Mathematica vol. 4 (1933) pp. 128-133. D. Milman, On some criteria for the regularity of spaces of the type $(B)$, C. R. (Doklady) Acad. Sci. URSS. vol. 20 (1938) pp. 243-246.
- B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, DOI 10.1215/S0012-7094-39-00522-3 B. D. Roberts, On the geometry of abstract vector spaces, Tôhoku Math. J. vol. 39 (1934) pp. 42-59. V. Šmulian, On some geometrical properties of the unit sphere in the space of the type $(B)$, Rec. Math. (Mat. Sbornik) N. S. vol. 48 (1938) pp. 90-94.
- V. Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 643–648 (French). MR 0002704
- A. E. Taylor, The extension of linear functionals, Duke Math. J. 5 (1939), 538–547. MR 345
- A. E. Taylor, Derivatives in the calculus, Amer. Math. Monthly 49 (1942), 631–642. MR 7016, DOI 10.2307/2302570
Bibliographic Information
- © Copyright 1947 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 61 (1947), 265-292
- MSC: Primary 46.0X
- DOI: https://doi.org/10.1090/S0002-9947-1947-0021241-4
- MathSciNet review: 0021241