Orthogonality and linear functionals in normed linear spaces
Author:
Robert C. James
Journal:
Trans. Amer. Math. Soc. 61 (1947), 265-292
MSC:
Primary 46.0X
DOI:
https://doi.org/10.1090/S0002-9947-1947-0021241-4
MathSciNet review:
0021241
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Guido Ascoli, Sugli spazi lineari metrici e le loro varietà lineari, Ann. Mat. Pura Appl. 10 (1932), no. 1, 33–81 (Italian). MR 1553181, DOI https://doi.org/10.1007/BF02417133 S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- Garrett Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), no. 2, 169–172. MR 1545873, DOI https://doi.org/10.1215/S0012-7094-35-00115-6
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI https://doi.org/10.1090/S0002-9947-1936-1501880-4
- Frederick A. Ficken, Note on the existence of scalar products in normed linear spaces, Ann. of Math. (2) 45 (1944), 362–366. MR 10255, DOI https://doi.org/10.2307/1969273
- Robert Fortet, Remarques sur les espaces uniformément convexes, C. R. Acad. Sci. Paris 210 (1940), 497–499. MR 2007
- R. Fortet, Remarques sur les espaces uniformément convexes, Bull. Soc. Math. France 69 (1941), 23–46 (French). MR 13225 M. Fréchet, Sur la notion de différentielle, J. Math. Pures Appl. vol. 16 (1937) pp. 233-250. ---, Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espaces de Hilbert, Ann. of Math. vol. 36 (1935) pp. 705-718. V. Gantmakher and V. Šmulian, Sur les espaces linéaires dont la sphere unitaire est faiblement compacte, C. R. (Doklady) Acad. Sci. URSS. vol. 17 (1937) pp. 91-94.
- R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291–302. MR 12199
- P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719–723. MR 1503247, DOI https://doi.org/10.2307/1968653 H. Löwig, Komplexe Euklidische Räume von beliebiger endlicher oder transfiniter Dimensionzahl, Acta Litterarum Ac Scientiarum vol. 7 (1934-1935) pp. 1-33. S. Mazur, Über convexe Mengen in linearen normierten Räumen, Studia Mathematica vol. 4 (1933) pp. 70-84. ---, Über schwache Konvergenz in den Räumen $({L^p})$, Studia Mathematica vol. 4 (1933) pp. 128-133. D. Milman, On some criteria for the regularity of spaces of the type $(B)$, C. R. (Doklady) Acad. Sci. URSS. vol. 20 (1938) pp. 243-246.
- B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, DOI https://doi.org/10.1215/S0012-7094-39-00522-3 B. D. Roberts, On the geometry of abstract vector spaces, Tôhoku Math. J. vol. 39 (1934) pp. 42-59. V. Šmulian, On some geometrical properties of the unit sphere in the space of the type $(B)$, Rec. Math. (Mat. Sbornik) N. S. vol. 48 (1938) pp. 90-94.
- V. Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N. S.) 27 (1940), 643–648 (French). MR 0002704
- A. E. Taylor, The extension of linear functionals, Duke Math. J. 5 (1939), 538–547. MR 345
- A. E. Taylor, Derivatives in the calculus, Amer. Math. Monthly 49 (1942), 631–642. MR 7016, DOI https://doi.org/10.2307/2302570
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.0X
Retrieve articles in all journals with MSC: 46.0X
Additional Information
Article copyright:
© Copyright 1947
American Mathematical Society