On Möbius’ inversion formula and closed sets of functions
HTML articles powered by AMS MathViewer
 by Otto Szász PDF
 Trans. Amer. Math. Soc. 62 (1947), 213239 Request permission
References

S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
 D. G. Bourgin, On certain sequences of functions, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 1–5. MR 14500, DOI 10.1073/pnas.32.1.1 H. Davenport, On some infinite series involving arithmetical functions, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 813, 313320.
 Einar Hille, The inversion problem of Möbius, Duke Math. J. 3 (1937), no. 4, 549–568. MR 1546010, DOI 10.1215/S0012709437003442
 Einar Hille and Otto Szász, On the completeness of Lambert functions, Bull. Amer. Math. Soc. 42 (1936), no. 6, 411–418. MR 1563312, DOI 10.1090/S000299041936063196
 Friedrich Riesz, Über eine Verallgemeinerung der Parsevalschen Formel, Math. Z. 18 (1923), no. 1, 117–124 (German). MR 1544624, DOI 10.1007/BF01192400
 N. P. Romanov, On an orthogonal system, C. R. (Doklady) Acad. Sci. URSS (N.S.) 40 (1943), 257–258. MR 0010640
 Otto Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77 (1916), no. 4, 482–496 (German). MR 1511875, DOI 10.1007/BF01456964 —Lectures on the analytic theory of numbers, University of Cincinnati, 19381939.
 Aurel Wintner, Diophantine approximations and Hilbert’s space, Amer. J. Math. 66 (1944), 564–578. MR 11497, DOI 10.2307/2371766 A. Zygmund, Trigonometrical series, Warsaw, 1935.
 D. G. Bourgin, A class of sequences of functions, Trans. Amer. Math. Soc. 60 (1946), 478–518. MR 20168, DOI 10.1090/S00029947194600201680
 Aurel Wintner, A solution theory of the Möbius inversion, Amer. J. Math. 68 (1946), 321–339. MR 16144, DOI 10.2307/2371845
Additional Information
 © Copyright 1947 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 62 (1947), 213239
 MSC: Primary 42.4X
 DOI: https://doi.org/10.1090/S00029947194700219891
 MathSciNet review: 0021989