On Möbius’ inversion formula and closed sets of functions
HTML articles powered by AMS MathViewer
- by Otto Szász
- Trans. Amer. Math. Soc. 62 (1947), 213-239
- DOI: https://doi.org/10.1090/S0002-9947-1947-0021989-1
- PDF | Request permission
References
- S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- D. G. Bourgin, On certain sequences of functions, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 1–5. MR 14500, DOI 10.1073/pnas.32.1.1 H. Davenport, On some infinite series involving arithmetical functions, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 8-13, 313-320.
- Einar Hille, The inversion problem of Möbius, Duke Math. J. 3 (1937), no. 4, 549–568. MR 1546010, DOI 10.1215/S0012-7094-37-00344-2
- Einar Hille and Otto Szász, On the completeness of Lambert functions, Bull. Amer. Math. Soc. 42 (1936), no. 6, 411–418. MR 1563312, DOI 10.1090/S0002-9904-1936-06319-6
- Friedrich Riesz, Über eine Verallgemeinerung der Parsevalschen Formel, Math. Z. 18 (1923), no. 1, 117–124 (German). MR 1544624, DOI 10.1007/BF01192400
- N. P. Romanov, On an orthogonal system, C. R. (Doklady) Acad. Sci. URSS (N.S.) 40 (1943), 257–258. MR 0010640
- Otto Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77 (1916), no. 4, 482–496 (German). MR 1511875, DOI 10.1007/BF01456964 —Lectures on the analytic theory of numbers, University of Cincinnati, 1938-1939.
- Aurel Wintner, Diophantine approximations and Hilbert’s space, Amer. J. Math. 66 (1944), 564–578. MR 11497, DOI 10.2307/2371766 A. Zygmund, Trigonometrical series, Warsaw, 1935.
- D. G. Bourgin, A class of sequences of functions, Trans. Amer. Math. Soc. 60 (1946), 478–518. MR 20168, DOI 10.1090/S0002-9947-1946-0020168-0
- Aurel Wintner, A solution theory of the Möbius inversion, Amer. J. Math. 68 (1946), 321–339. MR 16144, DOI 10.2307/2371845
Bibliographic Information
- © Copyright 1947 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 62 (1947), 213-239
- MSC: Primary 42.4X
- DOI: https://doi.org/10.1090/S0002-9947-1947-0021989-1
- MathSciNet review: 0021989