Homology properties of arbitrary subsets of Euclidean spaces
HTML articles powered by AMS MathViewer
- by Samuel Kaplan
- Trans. Amer. Math. Soc. 62 (1947), 248-271
- DOI: https://doi.org/10.1090/S0002-9947-1947-0024128-6
- PDF | Request permission
References
- Paul Alexandroff, Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension, Ann. of Math. (2) 30 (1928/29), no. 1-4, 101–187 (German). MR 1502874, DOI 10.2307/1968272 P. Alexandroff and H. Hopf, Topologie, vol. 1, Berlin, 1935. E. Čech, Theorie generale de l’homologie dans un espace quelconque, Fund. Math. vol. 19 (1932) pp. 149-183. C. H. Dowker, Mapping theorems in non-compact spaces, Princeton Thesis, 1938.
- Samuel Eilenberg, An invariance theorem for subsets of $S^n$, Bull. Amer. Math. Soc. 47 (1941), 73–75. MR 3200, DOI 10.1090/S0002-9904-1941-07362-3
- Heinz Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Ann. 104 (1931), no. 1, 637–665 (German). MR 1512691, DOI 10.1007/BF01457962
- Witold Hurewicz, Über Einbettung separabler Räume in gleichdimensionale kompakte Räume, Monatsh. Math. Phys. 37 (1930), no. 1, 199–208 (German). MR 1549788, DOI 10.1007/BF01696770
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
Bibliographic Information
- © Copyright 1947 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 62 (1947), 248-271
- MSC: Primary 56.0X
- DOI: https://doi.org/10.1090/S0002-9947-1947-0024128-6
- MathSciNet review: 0024128