The hyperplane sections of normal varieties
Author:
A. Seidenberg
Journal:
Trans. Amer. Math. Soc. 69 (1950), 357-386
MSC:
Primary 14.0X
DOI:
https://doi.org/10.1090/S0002-9947-1950-0037548-0
MathSciNet review:
0037548
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Claude Chevalley, Some properties of ideals in rings of power series, Trans. Amer. Math. Soc. 55 (1944), 68–84. MR 10548, https://doi.org/10.1090/S0002-9947-1944-0010548-X
- [2] I. S. Cohen and A. Seidenberg, Prime ideals and integral dependence, Bull. Amer. Math. Soc. 52 (1946), 252–261. MR 15379, https://doi.org/10.1090/S0002-9904-1946-08552-3
- [3] P. M. Grundy, On integrally dependent integral domains, Philos. Trans. Roy. Soc. London Ser. A 240 (1947), 295–326. MR 23233, https://doi.org/10.1098/rsta.1947.0004
- [4] Grete Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), no. 1, 736–788 (German). MR 1512302, https://doi.org/10.1007/BF01206635
- [5] W. Krull, Idealtheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4, no. 3, Berlin, 1935.
- [6] Wolfgang Krull, Parameterspezialisierung in Polynomringen, Arch. Math. 1 (1948), 56–64 (German). MR 26640, https://doi.org/10.1007/BF02038208
- [7] Wolfgang Krull, Parameterspezialisierung in Polynomringen. II. Das Grundpolynom, Arch. Math. (Basel) 1 (1948), 129–137 (German). MR 32587, https://doi.org/10.1007/BF02039524
- [8] Saunders Mac Lane, Modular fields. I. Separating transcendence bases, Duke Math. J. 5 (1939), no. 2, 372–393. MR 1546131, https://doi.org/10.1215/S0012-7094-39-00532-6
- [9] Emmy Noether, Eliminationstheorie und allgemeine Idealtheorie, Math. Ann. 90 (1923), no. 3-4, 229–261 (German). MR 1512173, https://doi.org/10.1007/BF01455443
- [10] Friedrich Karl Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen I, Math. Z. 41 (1936), no. 1, 415–438 (German). MR 1545630, https://doi.org/10.1007/BF01180431
- [11] Friedrich Karl Schmidt, Über die Erhaltung der Kettensätze der Idealtheorie bei beliebigen endlichen Körpererweiterungen, Math. Z. 41 (1936), no. 1, 443–450 (German). MR 1545632, https://doi.org/10.1007/BF01180433
- [12] B. L. van der Waerden, Zur algebraischen Geometrie. X, Math. Ann. 113 (1937), no. 1, 705–712 (German). MR 1513118, https://doi.org/10.1007/BF01571661
- [13] -, Moderne Algebra, vol. 2, Berlin, 1931.
- [14] André Weil, Foundations of Algebraic Geometry, American Mathematical Society Colloquium Publications, vol. 29, American Mathematical Society, New York, 1946. MR 0023093
- [15] Oscar Zariski, Some Results in the Arithmetic Theory of Algebraic Varieties, Amer. J. Math. 61 (1939), no. 2, 249–294. MR 1507376, https://doi.org/10.2307/2371499
- [16] Oscar Zariski, Pencils on an algebraic variety and a new proof of a theorem of Bertini, Trans. Amer. Math. Soc. 50 (1941), 48–70. MR 4241, https://doi.org/10.1090/S0002-9947-1941-0004241-4
- [17] Oscar Zariski, The theorem of Bertini on the variable singular points of a linear system of varieties, Trans. Amer. Math. Soc. 56 (1944), 130–140. MR 11572, https://doi.org/10.1090/S0002-9947-1944-0011572-3
- [18] Oscar Zariski, Foundations of a general theory of birational correspondences, Trans. Amer. Math. Soc. 53 (1943), 490–542. MR 8468, https://doi.org/10.1090/S0002-9947-1943-0008468-9
- [19] Oscar Zariski, The concept of a simple point of an abstract algebraic variety, Trans. Amer. Math. Soc. 62 (1947), 1–52. MR 21694, https://doi.org/10.1090/S0002-9947-1947-0021694-1
Retrieve articles in Transactions of the American Mathematical Society with MSC: 14.0X
Retrieve articles in all journals with MSC: 14.0X
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1950-0037548-0
Article copyright:
© Copyright 1950
American Mathematical Society