Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Some theorems on integral functions with negative zeros
HTML articles powered by AMS MathViewer

by N. A. Bowen and A. J. Macintyre
Trans. Amer. Math. Soc. 70 (1951), 114-126
DOI: https://doi.org/10.1090/S0002-9947-1951-0040416-2
References
  • N. A. Bowen, A function-theory proof of Tauberian theorems on integral functions, Quart. J. Math. Oxford Ser. 19 (1948), 90–100. MR 24980, DOI 10.1093/qmath/os-19.1.90
  • Maurice Heins, Entire functions with bounded minimum modulus; subharmonic function analogues, Ann. of Math. (2) 49 (1948), 200–213. MR 23342, DOI 10.2307/1969122
  • R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936. —, Le théorème de Picard-Borel et la thèorie des fonctions méromorphes, Paris, 1929.
  • Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
  • E. C. Titchmarsh, Proc. London Math. Soc. (2) vol. 26 (1926) pp. 185-200. G. Valiron, Annales de Toulouse (3) vol. 5 (1914) pp. 117-257. —, Thèses, Toulouse, 1914.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.0X
  • Retrieve articles in all journals with MSC: 30.0X
Bibliographic Information
  • © Copyright 1951 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 70 (1951), 114-126
  • MSC: Primary 30.0X
  • DOI: https://doi.org/10.1090/S0002-9947-1951-0040416-2
  • MathSciNet review: 0040416