A class of multivalent functions
HTML articles powered by AMS MathViewer
- by A. W. Goodman and M. S. Robertson
- Trans. Amer. Math. Soc. 70 (1951), 127-136
- DOI: https://doi.org/10.1090/S0002-9947-1951-0040430-7
- PDF | Request permission
References
- M. Biernacki, Sur les fonctions multivalentes d’ordre $p$, C. R. Acad. Sci. Paris vol. 203 (1936) pp. 449-451.
- Jean Dieudonné, Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions bornées d’une variable complexe, Ann. Sci. École Norm. Sup. (3) 48 (1931), 247–358 (French). MR 1509314
- A. W. Goodman, On some determinants related to $p$-valent functions, Trans. Amer. Math. Soc. 63 (1948), 175–192. MR 23910, DOI 10.1090/S0002-9947-1948-0023910-X
- A. W. Goodman, On the Schwarz-Christoffel transformation and $p$-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204–223. MR 33886, DOI 10.1090/S0002-9947-1950-0033886-6
- M. S. Robertson, A representation of all analytic functions in terms of functions with positive real part, Ann. of Math. (2) 38 (1937), no. 4, 770–783. MR 1503368, DOI 10.2307/1968833
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512–519. MR 51
- M. S. Robertson, Star center points of multivalent functions, Duke Math. J. 12 (1945), 669–684. MR 15161
- Werner Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), no. 1, 93–121 (German). MR 1545292, DOI 10.1007/BF01186552 O. Szász, Über Funktionen, die den Einheitskreis schlicht abbilden, Jber. Deutschen Math. Verein. vol. 42 (1932) pp. 73-75.
Bibliographic Information
- © Copyright 1951 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 70 (1951), 127-136
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9947-1951-0040430-7
- MathSciNet review: 0040430