Tensor algebras over Hilbert spaces. I
HTML articles powered by AMS MathViewer
- by I. E. Segal
- Trans. Amer. Math. Soc. 81 (1956), 106-134
- DOI: https://doi.org/10.1090/S0002-9947-1956-0076317-8
- PDF | Request permission
References
- R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to $L_2$ over the space $C$, Duke Math. J. 14 (1947), 99–107. MR 20231
- J. M. Cook, The mathematics of second quantization, Trans. Amer. Math. Soc. 74 (1953), 222–245. MR 53784, DOI 10.1090/S0002-9947-1953-0053784-4
- P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford, at the Clarendon Press, 1947. 3d ed. MR 0023198
- Richard P. Feynman, An operator calculus having applications in quantum electrodynamics, Phys. Rev. (2) 84 (1951), 108–128. MR 44379
- K. O. Friedrichs, Mathematical aspects of the quantum theory of fields, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1953. MR 0056468
- Shizuo Kakutani, Determination of the spectrum of the flow of Brownian motion, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 319–323. MR 35924, DOI 10.1073/pnas.36.5.319
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 54864, DOI 10.2307/1969729
- I. E. Segal, Abstract probability spaces and a theorem of Kolmogoroff, Amer. J. Math. 76 (1954), 721–732. MR 63602, DOI 10.2307/2372714
- M. H. Stone, On one-parameter unitary groups in Hilbert space, Ann. of Math. (2) 33 (1932), no. 3, 643–648. MR 1503079, DOI 10.2307/1968538 H. Weyl, The classical groups, Princeton, 1939. —, Gruppentheorie und Quantenmechanik, 2d ed., Leipzig, 1931.
- Norbert Wiener, The Homogeneous Chaos, Amer. J. Math. 60 (1938), no. 4, 897–936. MR 1507356, DOI 10.2307/2371268
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 81 (1956), 106-134
- MSC: Primary 46.2X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0076317-8
- MathSciNet review: 0076317