Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The approximate functional equation of Hecke’s Dirichlet series
HTML articles powered by AMS MathViewer

by T. M. Apostol and Abe Sklar PDF
Trans. Amer. Math. Soc. 86 (1957), 446-462 Request permission
References
  • T. M. Apostol, Identities involving the coefficients of certain Dirichlet series, Duke Math. J. 18 (1951), 517–525. MR 41880, DOI 10.1215/S0012-7094-51-01842-X
  • N. Čudakov, On Goldbach-Vinogradov’s theorem, Ann. of Math. vol. 48 (1947) pp. 515-545. A. Erdélyi, et al. Higher transcendental functions, vol. 2, McGraw-Hill, 1954. —, Tables of integral transforms, vol. 1, McGraw-Hill. 1954.
  • G. H. Hardy and J. E. Littlewood, The zeros of Riemann’s zeta-function on the critical line, Math. Z. 10 (1921), no. 3-4, 283–317. MR 1544477, DOI 10.1007/BF01211614
  • —, The approximate functional equation in the theory of the zeta-function, with applications to the divisor problems of Dirichlet and Piltz, Proc. London Math. Soc. (2) vol. 21 (1922) pp. 39-74. —, The approximate functional equations for $\zeta (s)$ and ${\zeta ^2}(s)$, Proc. London Math. Soc. (2) vol. 29 (1929) pp. 81-97. E. Hecke, Dirichlet series, Planographed lectures, Princeton, Institute for Advanced Study, 1938. E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen II, Nachr. Ges. Wiss. Gottingen (1915) pp. 209-243. H. S. A. Potter, Approximate equations for the Epstein zeta-function, Proc. London Math. Soc. (2) vol. 36 (1934) pp. 501-515.
  • R. A. Rankin, Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions. I. The zeros of the function $\sum ^\infty _{n=1}\tau (n)/n^s$ on the line ${\mathfrak {R}}s=13/2$. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 351–372. MR 411, DOI 10.1017/S0305004100021095
  • R. A. Rankin, Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions. III. A note on the sum function of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 36 (1940), 150–151. MR 1249, DOI 10.1017/s0305004100017114
  • C. L. Siegel, Über Riemanns Nachlass zur analytische Zahlentheorie, Quellen und Studien zur Geschichte der Math., Astron. und Physik, Abt. B: Studien, vol. 2 (1932) pp. 45-80. Z. Suetuna, The zeros of the $L$-functions on the critical line, Tôhoku Math. J. vol. 29 (1925) pp. 313-331. —, Über die approximative Funktionalgleichung die Dirichletsche $L$-funktionen, Jap. J. Math. vol. 9 (1932) pp. 111-116.
  • Tikao Tatuzawa, The approximate functional equation for Dirichlet’s $L$-series, Jpn. J. Math. 22 (1952), 19–25 (1953). MR 62775, DOI 10.4099/jjm1924.22.0_{1}9
  • E. C. Titchmarsh, The approximate functional equation for ${\zeta ^2}(s)$, Quart. J. Math. Oxford Ser. vol. 9 (1938) pp. 109-114. —, Theory of functions, 2d ed., Oxford University Press, 1939. —, Theory of the Riemann zeta function, Oxford University Press, 1951.
  • Rudolf Wiebelitz, Über approximative Funktionalgleichungen der Potenzen der Riemannschen Zetafunktion, Math. Nachr. 6 (1952), 263–270 (German). MR 49926, DOI 10.1002/mana.19520060503
  • J. R. Wilton, An approximate functional equation for the product of two $\zeta$-functions, Proc. London Math. Soc. (2) vol. 31 (1930) pp. 11-17.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 10.00, 39.00
  • Retrieve articles in all journals with MSC: 10.00, 39.00
Additional Information
  • © Copyright 1957 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 86 (1957), 446-462
  • MSC: Primary 10.00; Secondary 39.00
  • DOI: https://doi.org/10.1090/S0002-9947-1957-0094319-3
  • MathSciNet review: 0094319