The rate of increase of real continuous solutions of certain algebraic functional equations
HTML articles powered by AMS MathViewer
- by K. L. Cooke
- Trans. Amer. Math. Soc. 92 (1959), 106-124
- DOI: https://doi.org/10.1090/S0002-9947-1959-0107765-8
- PDF | Request permission
References
- E. Borel, Mémoire sur les séries divergentes, Ann. Sci. Ecole Norm. Sup. vol. 16 (1899) pp. 9-136.
- K. L. Cooke, The rate of increase of real continuous solutions of algebraic differential-difference equations of the first order, Pacific J. Math. 4 (1954), 483–501. MR 65008 G. H. Hardy, Orders of infinity, Cambridge Tract No. 12, Cambridge University Press, 1910.
- Otis E. Lancaster, Some results concerning the behavior at infinity of real continuous solutions of algebraic difference equations, Bull. Amer. Math. Soc. 46 (1940), 169–177. MR 1108, DOI 10.1090/S0002-9904-1940-07164-2
- E. Lindelöf, Sur la croissance des intégrales des équations différentielles algébriques du premier ordre, Bull. Soc. Math. France 27 (1899), 205–215 (French). MR 1504345
- S. M. Shah, On real continuous solutions of algebraic difference equations, Bull. Amer. Math. Soc. 53 (1947), 548–558. MR 22299, DOI 10.1090/S0002-9904-1947-08830-3
- S. M. Shah, On real continuous solutions of algebraic difference equations. II, Proc. Nat. Inst. Sci. India 16 (1950), 11–17. MR 36422
Bibliographic Information
- © Copyright 1959 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 92 (1959), 106-124
- MSC: Primary 39.00
- DOI: https://doi.org/10.1090/S0002-9947-1959-0107765-8
- MathSciNet review: 0107765