A problem on partitions with a prime modulus $p\geq 3$
HTML articles powered by AMS MathViewer
- by Peter Hagis
- Trans. Amer. Math. Soc. 102 (1962), 30-62
- DOI: https://doi.org/10.1090/S0002-9947-1962-0146166-3
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 118 (1965), 550.
References
- Emil Grosswald, Some theorems concerning partitions, Trans. Amer. Math. Soc. 89 (1958), 113–128. MR 97371, DOI 10.1090/S0002-9947-1958-0097371-5 G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatorial analysis, Proc. London Math. Soc. (2) 17 (1918), 75-115.
- Joseph Lehner, A partition function connected with the modulus five, Duke Math. J. 8 (1941), 631–655. MR 5523
- John Livingood, A partition function with the prime modulus $P>3$, Amer. J. Math. 67 (1945), 194–208. MR 12101, DOI 10.2307/2371722
- Hans Petersson, Über Modulfunktionen und Partitionenprobleme, Abh. Deutsch. Akad. Wiss. Berlin. Kl. Math. Nat. 1954 (1954), no. 2, 59 (German). MR 0071458
- Hans Petersson, Über die arithmetischen Eigenschaften eines Systems multiplikativer Modulfunktionen von Primzahlstufe, Acta Math. 95 (1956), 57–110 (German). MR 77566, DOI 10.1007/BF02401098 H. Rademacher, On the partition function $p(n)$, Proc. London Math. Soc. (2) 43 (1937), 241-254.
- Hans Rademacher, The Fourier Coefficients of the Modular Invariant J($\tau$), Amer. J. Math. 60 (1938), no. 2, 501–512. MR 1507331, DOI 10.2307/2371313
- Hans Rademacher and Herbert S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. (2) 39 (1938), no. 2, 433–462. MR 1503417, DOI 10.2307/1968796
- Hans Rademacher and Albert Whiteman, Theorems on Dedekind sums, Amer. J. Math. 63 (1941), 377–407. MR 3650, DOI 10.2307/2371532
- Hans Salié, Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen, Math. Z. 36 (1933), no. 1, 263–278 (German). MR 1545344, DOI 10.1007/BF01188622 H. J. Smith, Collected math. papers, Vol. 2, Clarendon Press, Oxford, 1894.
- Heinrich Tietze, Ein zweiter Beweis eines Satzes über Partitionen, S.-B. Math.-Nat. Abt. Bayer. Akad. Wiss. 1947 (1947), 45–46 (German). MR 24935 G. N. Watson, A treatise on the theory of Bessel functions, Cambridge, 1922.
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 102 (1962), 30-62
- MSC: Primary 10.48
- DOI: https://doi.org/10.1090/S0002-9947-1962-0146166-3
- MathSciNet review: 0146166