The $(\varphi , s)$ regular subsets of $n$-space
Author:
John M. Marstrand
Journal:
Trans. Amer. Math. Soc. 113 (1964), 369-392
MSC:
Primary 28.80
DOI:
https://doi.org/10.1090/S0002-9947-1964-0166336-X
MathSciNet review:
0166336
Full-text PDF Free Access
References | Similar Articles | Additional Information
- A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Ann. 115 (1938), no. 1, 296โ329. MR 1513189, DOI https://doi.org/10.1007/BF01448943
- Herbert Federer, The $(\varphi ,k)$ rectifiable subsets of $n$-space, Trans. Amer. Math. Soc. 62 (1947), 114โ192. MR 22594, DOI https://doi.org/10.1090/S0002-9947-1947-0022594-3
- J. M. Marstrand, Circular density of plane sets, J. London Math. Soc. 30 (1955), 238โ246. MR 67964, DOI https://doi.org/10.1112/jlms/s1-30.2.238
- J. M. Marstrand, Hausdorff two-dimensional measure in $3$-space, Proc. London Math. Soc. (3) 11 (1961), 91โ108. MR 123670, DOI https://doi.org/10.1112/plms/s3-11.1.91
- Edward F. Moore, Density ratios and $(\phi ,1)$ rectifiability in $n$-space, Trans. Amer. Math. Soc. 69 (1950), 324โ334. MR 37894, DOI https://doi.org/10.1090/S0002-9947-1950-0037894-0
- Anthony P. Morse, The role of internal families in measure theory, Bull. Amer. Math. Soc. 50 (1944), 723โ728. MR 11107, DOI https://doi.org/10.1090/S0002-9904-1944-08223-2
- A. P. Morse and John F. Randolph, The $\phi $ rectifiable subsets of the plane, Trans. Amer. Math. Soc. 55 (1944), 236โ305. MR 9975, DOI https://doi.org/10.1090/S0002-9947-1944-0009975-6 S. Saks, Theory of the integral, Hafner, Warsaw, 1937; ยง9, p. 82.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28.80
Retrieve articles in all journals with MSC: 28.80
Additional Information
Article copyright:
© Copyright 1964
American Mathematical Society