The Wiener integral and the Schrödinger operator
HTML articles powered by AMS MathViewer
- by Donald Babbitt
- Trans. Amer. Math. Soc. 116 (1965), 66-78
- DOI: https://doi.org/10.1090/S0002-9947-1965-0186926-9
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 121 (1966), 549-552.
References
- Donald Babbitt, The Wiener integral and perturbation theory of the Schrödinger operator, Bull. Amer. Math. Soc. 70 (1964), 254–259. MR 161180, DOI 10.1090/S0002-9904-1964-11106-X
- Donald G. Babbitt, A summation procedure for certain Feynman integrals, J. Mathematical Phys. 4 (1963), 36–41. MR 144665, DOI 10.1063/1.1703885
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- E. B. Dynkin, Transformations of Markov processes connected with additive functionals, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 117–142. MR 0141159
- E. B. Dynkin, Additive functionals of a Wiener process determined by stochastic integrals, Teor. Verojatnost. i Primenen. 5 (1960), 441–452 (Russian, with English summary). MR 0133163 —, Markov processes and problems in analysis, Amer. Math. Soc. Transl. (2) 31 (1963), 1-24.
- Jacob Feldman, On the Schrödinger and heat equations for nonnegative potentials, Trans. Amer. Math. Soc. 108 (1963), 251–264. MR 160264, DOI 10.1090/S0002-9947-1963-0160264-0
- R. K. Getoor, Additive functionals of a Markov process, Pacific J. Math. 7 (1957), 1577–1591. MR 94850, DOI 10.2140/pjm.1957.7.1577
- R. K. Getoor, Markov operators and their associated semi-groups, Pacific J. Math. 9 (1959), 449–472. MR 107297, DOI 10.2140/pjm.1959.9.449
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Teruo Ikebe and Tosio Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77–92. MR 142894, DOI 10.1007/BF00253334
- Kiyosi Ito, On stochastic differential equations, Mem. Amer. Math. Soc. 4 (1951), 51. MR 40618
- Seizô Itô, Fundamental solutions of parabolic differential equations and boundary value problems, Jpn. J. Math. 27 (1957), 55–102. MR 98240, DOI 10.4099/jjm1924.27.0_{5}5
- M. Kac, On some connections between probability theory and differential and integral equations, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, Calif., 1951, pp. 189–215. MR 0045333
- Tosio Kato, Quadratic forms in Hilbert spaces and asymptotic perturbation series, University of California, Department of Mathematics, Berkeley, Calif., 1955. MR 0073958 L. Landau and E. Lipshitz, Quantum mechanics, non-relativistic theory, Addison-Wesley, Reading, Mass., 1958. Ju. Prokhorov, Convergence of random processes and limit theorems in probability theory, Appendix 2, Theor. Probability Appl. 1 (1956), 207-214.
- Daniel Ray, On spectra of second-order differential operators, Trans. Amer. Math. Soc. 77 (1954), 299–321. MR 66539, DOI 10.1090/S0002-9947-1954-0066539-2
- Kôsaku Yosida, On the fundamental solution of the parabolic equation in a Riemannian space, Osaka Math. J. 5 (1953), 65–74. MR 56177
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 116 (1965), 66-78
- MSC: Primary 35.77; Secondary 35.06
- DOI: https://doi.org/10.1090/S0002-9947-1965-0186926-9
- MathSciNet review: 0186926