## The Wiener integral and the Schrödinger operator

HTML articles powered by AMS MathViewer

- by Donald Babbitt PDF
- Trans. Amer. Math. Soc.
**116**(1965), 66-78 Request permission

Correction: Trans. Amer. Math. Soc.

**121**(1966), 549-552.

## References

- Donald Babbitt,
*The Wiener integral and perturbation theory of the Schrödinger operator*, Bull. Amer. Math. Soc.**70**(1964), 254–259. MR**161180**, DOI 10.1090/S0002-9904-1964-11106-X - Donald G. Babbitt,
*A summation procedure for certain Feynman integrals*, J. Mathematical Phys.**4**(1963), 36–41. MR**144665**, DOI 10.1063/1.1703885 - Nelson Dunford and Jacob T. Schwartz,
*Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space*, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR**0188745** - E. B. Dynkin,
*Transformations of Markov processes connected with additive functionals*, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 117–142. MR**0141159** - E. B. Dynkin,
*Additive functionals of a Wiener process determined by stochastic integrals*, Teor. Verojatnost. i Primenen.**5**(1960), 441–452 (Russian, with English summary). MR**0133163**
—, - Jacob Feldman,
*On the Schrödinger and heat equations for nonnegative potentials*, Trans. Amer. Math. Soc.**108**(1963), 251–264. MR**160264**, DOI 10.1090/S0002-9947-1963-0160264-0 - R. K. Getoor,
*Additive functionals of a Markov process*, Pacific J. Math.**7**(1957), 1577–1591. MR**94850**, DOI 10.2140/pjm.1957.7.1577 - R. K. Getoor,
*Markov operators and their associated semi-groups*, Pacific J. Math.**9**(1959), 449–472. MR**107297**, DOI 10.2140/pjm.1959.9.449 - Einar Hille and Ralph S. Phillips,
*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR**0089373** - Teruo Ikebe and Tosio Kato,
*Uniqueness of the self-adjoint extension of singular elliptic differential operators*, Arch. Rational Mech. Anal.**9**(1962), 77–92. MR**142894**, DOI 10.1007/BF00253334 - Kiyosi Ito,
*On stochastic differential equations*, Mem. Amer. Math. Soc.**4**(1951), 51. MR**40618** - Seizô Itô,
*Fundamental solutions of parabolic differential equations and boundary value problems*, Jpn. J. Math.**27**(1957), 55–102. MR**98240**, DOI 10.4099/jjm1924.27.0_{5}5 - M. Kac,
*On some connections between probability theory and differential and integral equations*, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, Calif., 1951, pp. 189–215. MR**0045333** - Tosio Kato,
*Quadratic forms in Hilbert spaces and asymptotic perturbation series*, University of California, Department of Mathematics, Berkeley, Calif., 1955. MR**0073958**
L. Landau and E. Lipshitz, - Daniel Ray,
*On spectra of second-order differential operators*, Trans. Amer. Math. Soc.**77**(1954), 299–321. MR**66539**, DOI 10.1090/S0002-9947-1954-0066539-2 - Kôsaku Yosida,
*On the fundamental solution of the parabolic equation in a Riemannian space*, Osaka Math. J.**5**(1953), 65–74. MR**56177**

*Markov processes and problems in analysis*, Amer. Math. Soc. Transl. (2)

**31**(1963), 1-24.

*Quantum mechanics, non-relativistic theory*, Addison-Wesley, Reading, Mass., 1958. Ju. Prokhorov,

*Convergence of random processes and limit theorems in probability theory*, Appendix 2, Theor. Probability Appl.

**1**(1956), 207-214.

## Additional Information

- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**116**(1965), 66-78 - MSC: Primary 35.77; Secondary 35.06
- DOI: https://doi.org/10.1090/S0002-9947-1965-0186926-9
- MathSciNet review: 0186926