An integral representation of a normal functional on a von Neumann algebra
HTML articles powered by AMS MathViewer
- by Herbert Halpern
- Trans. Amer. Math. Soc. 125 (1966), 32-46
- DOI: https://doi.org/10.1090/S0002-9947-1966-0198266-3
- PDF | Request permission
References
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
- James Glimm, A Stone-Weierstrass theorem for $C^{\ast }$-algebras, Ann. of Math. (2) 72 (1960), 216–244. MR 116210, DOI 10.2307/1970133 —, Type I ${C^ \ast }$-algebras, Ann. of Math. 74 (1961), 572-612.
- M. A. Naĭmark, Normed rings, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). MR 0090786
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101 J. Taylor, Tomita decomposition of rings of operators, Manuscript.
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 125 (1966), 32-46
- MSC: Primary 46.65
- DOI: https://doi.org/10.1090/S0002-9947-1966-0198266-3
- MathSciNet review: 0198266