Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Oscillation theorems of arithmetical functions
HTML articles powered by AMS MathViewer

by Emil Grosswald PDF
Trans. Amer. Math. Soc. 126 (1967), 1-28 Request permission
References
  • D. Davies and C. B. Haselgrove, The evaluation of Dirichlet $L$-functions, Proc. Roy. Soc. London Ser. A 264 (1961), 122–132. MR 136052, DOI 10.1098/rspa.1961.0187
  • Émile Grosswald, Sur une propriété des racines complexes des fonctions $L(s,\,\chi )$, C. R. Acad. Sci. Paris 260 (1965), 4299–4302 (French). MR 181620
  • Émile Grosswald, Sur l’ordre de grandeur des différences $\psi (x)-x$ et $\pi (x)-\textrm {li}\,x$, C. R. Acad. Sci. Paris 260 (1965), 3813–3816 (French). MR 179146
  • Emil Grosswald, On some generalizations of theorems by Landau and Pólya, Israel J. Math. 3 (1965), 211–220. MR 198145, DOI 10.1007/BF03008399
  • G. H. Hardy and J. E. Littlewood, Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes, Acta Math. 41 (1916), no. 1, 119–196. MR 1555148, DOI 10.1007/BF02422942
  • G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
  • C. B. Haselgrove, A disproof of a conjecture of Pólya, Mathematika 5 (1958), 141–145. MR 104638, DOI 10.1112/S0025579300001480
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann zeta function, Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960. MR 0117905
  • A. E. Ingham, Acta Arith. 1 (1936), 201-211. —, The distribution of prime numbers, Cambridge Univ. Press, Cambridge, 1932.
  • J. L. W. V. Jensen, Sur un nouvel et important théorème de la théorie des fonctions, Acta Math. 22 (1899), no. 1, 359–364 (French). MR 1554908, DOI 10.1007/BF02417878
  • S. Knapowski and P. Turán, Acta Math. Acad. Sci. Hungar. 13 (1962), 229-314. —, Acta Math. Acad. Sci. Hungar. 13 (1962), 315-342.
  • S. Knapowski and P. Turán, Comparative prime-number theory. I. Introduction, Acta Math. Acad. Sci. Hungar. 13 (1962), 299–314. MR 146156, DOI 10.1007/BF02020796
  • S. Knapowski and P. Turán, Comparative prime-number theory. IV. Paradigma to the general case, $k=8$ and $5$, Acta Math. Acad. Sci. Hungar. 14 (1963), 31–42. MR 146159, DOI 10.1007/BF01901928
  • —, Acta Math. Acad. Sci. Hungar. 14 (1963), 43-63. —, Acta Math. Acad. Sci. Hungar. 14 (1963), 65-78. —, Acta Math. Acad. Sci. Hungar. 14 (1963), 241-250. —, Acta Math. Acad. Sci. Hungar. 14 (1963), 251-268.
  • S. Knapowski and P. Turán, Further developments in the comparative prime-number theory. I, Acta Arith. 9 (1964), 23–40. MR 162771, DOI 10.4064/aa-9-1-23-40
  • S. Knapowski and P. Turán, On an assertion of Čebyšev, J. Analyse Math. 14 (1965), 267–274. MR 177963, DOI 10.1007/BF02806393
  • Helge von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), no. 1, 159–182 (French). MR 1554926, DOI 10.1007/BF02403071
  • —, Math. Ann. 55 (1902), 441-464. E. Landau, Math. Ann. 59 (1905), 527-550.
  • D. H. Lehmer, Extended computation of the Riemann zeta-function, Mathematika 3 (1956), 102–108. MR 86083, DOI 10.1112/S0025579300001753
  • J. E. Littlewood, C. R. Acad. Sci. Paris 158 (1914), 1862-1872. E. Phragmén, Öfversigt of Kong. Vetensk.-Akad. Förhandlingar, Stockholm, Vol. 48, 1898; pp. 559-616. G. Pólya, Nachr. Ges. Wiss. Göttingen (1930), 19-27.
  • Karl Prachar, Primzahlverteilung, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 91, Springer-Verlag, Berlin-New York, 1978 (German). Reprint of the 1957 original. MR 516660
  • Erhard Schmidt, Über die Anzahl der Primzahlen unter gegebener Grenze, Math. Ann. 57 (1903), no. 2, 195–204 (German). MR 1511206, DOI 10.1007/BF01444344
  • P. L. Tchebycheff, Bull. de la Classe Phys., Math. de l’Acad. Imperiale des Sciences, St. Petersbourg 11 (1853), 208.
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon Press, 1951. MR 0046485
  • Paul Turán, Eine neue Methode in der Analysis und deren Anwendungen, Akadémiai Kiadó, Budapest, 1953 (German). MR 0060548
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 10.43
  • Retrieve articles in all journals with MSC: 10.43
Additional Information
  • © Copyright 1967 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 126 (1967), 1-28
  • MSC: Primary 10.43
  • DOI: https://doi.org/10.1090/S0002-9947-1967-0202685-7
  • MathSciNet review: 0202685