Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Changes of variables near a periodic orbit
HTML articles powered by AMS MathViewer

by Al Kelley PDF
Trans. Amer. Math. Soc. 126 (1967), 316-334 Request permission
References
  • È. G. Belaga, The reducibility of a system of ordinary differential equations in the neighborhood of a conditionally periodic motion, Dokl. Akad. Nauk SSSR 143 (1962), 255–258 (Russian). MR 0138845
  • H. Dulac, Solutions d’un système d’équations différentielles dans le voisinage de valeurs singulières, Bull. Soc. Math. France 40 (1912), 324–383 (French). MR 1504694
  • A. Kelley, Change of variables techniques in ordinary differential equations, Thesis, Univ. of California, Berkeley, 1963. —, Changes of variables near a periodic surface or integral manifold, (to appear).
  • Solomon Lefschetz, Differential equations: Geometric theory, 2nd ed., Pure and Applied Mathematics, Vol. VI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0153903
  • H. Poincaré, Oeuvres de Henri Poincaré, Tome I, Gauthier-Villars, Paris, 1951.
  • Yasutaka Sibuya, Non-linear ordinary differential equations with periodic coefficients, Funkcial. Ekvac. 1 (1958), 121–204. MR 102634
  • Yasutaka Sibuya, On bounded solutions of ordinary differential equations with almost periodic coefficients, Bol. Soc. Mat. Mexicana (2) 5 (1960), 290–293. MR 139799
  • Carl Ludwig Siegel, Der Dreierstoss, Ann. of Math. (2) 42 (1941), 127–168 (German). MR 3736, DOI 10.2307/1968991
  • Carl Ludwig Siegel, Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt. 1952 (1952), 21–30 (German). MR 57407
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 34.45
  • Retrieve articles in all journals with MSC: 34.45
Additional Information
  • © Copyright 1967 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 126 (1967), 316-334
  • MSC: Primary 34.45
  • DOI: https://doi.org/10.1090/S0002-9947-1967-0206399-9
  • MathSciNet review: 0206399