Local times and sample function properties of stationary Gaussian processes
HTML articles powered by AMS MathViewer
- by Simeon M. Berman
- Trans. Amer. Math. Soc. 137 (1969), 277-299
- DOI: https://doi.org/10.1090/S0002-9947-1969-0239652-5
- PDF | Request permission
References
- Yu. K. Belyaev, Continuity and Hölder’s conditions for sample functions of stationary Gaussian processes, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 23–33. MR 0143256
- Edward S. Boylan, Local times for a class of Markoff processes, Illinois J. Math. 8 (1964), 19–39. MR 158434 C. Carathéodory, Theory of functions, Vol. 2, 2nd English ed., Chelsea, New York, 1960.
- Harald Cramér, Mathematical Methods of Statistics, Princeton Mathematical Series, vol. 9, Princeton University Press, Princeton, N. J., 1946. MR 0016588
- Harald Cramér, On the maximum of a normal stationary stochastic process, Bull. Amer. Math. Soc. 68 (1962), 512–516. MR 140140, DOI 10.1090/S0002-9904-1962-10800-3
- Harald Cramér and M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0217860
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896 K. Itô and H. P. McKean, Jr., Diffusion processes and their sample paths, Springer-Verlag, Berlin, 1965.
- Paul Lévy, Sur certains processus stochastiques homogènes, Compositio Math. 7 (1939), 283–339 (French). MR 919
- Eugene Lukacs, Characteristic functions, Griffin’s Statistical Monographs & Courses, No. 5, Hafner Publishing Co., New York, 1960. MR 0124075
- H. F. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425–433. MR 96311, DOI 10.1215/ijm/1255454547
- J. Yeh, Differentiability of sample functions in Gaussian processes, Proc. Amer. Math. Soc. 18 (1967), 105–108. MR 203823, DOI 10.1090/S0002-9939-1967-0203823-8
- N. Donald Ylvisarer, The expected number of zeros of a stationary Gaussian process, Ann. Math. Statist. 36 (1965), 1043–1046. MR 177458, DOI 10.1214/aoms/1177700077
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 137 (1969), 277-299
- MSC: Primary 60.50
- DOI: https://doi.org/10.1090/S0002-9947-1969-0239652-5
- MathSciNet review: 0239652