The folded ribbon theorem. A contribution to the study of immersed circles
HTML articles powered by AMS MathViewer
- by George K. Francis
- Trans. Amer. Math. Soc. 141 (1969), 271-303
- DOI: https://doi.org/10.1090/S0002-9947-1969-0243542-1
- PDF | Request permission
References
- George K. Francis, The folded ribbon theorem, Dissertation, Univ. of Michigan, 1967. (University Microfilms Abstract 67-15,622, Vol. 28,6, 1967.)
- Heinz Hopf, Über die Drehung der Tangenten und Sehnen ebener Kurven, Compositio Math. 2 (1935), 50–62 (German). MR 1556906 Morris L. Marx and Roger F. Verhey, Polynomial extensions of normal curves, (to appear).
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942, DOI 10.1515/9781400878055
- Valentin Poenaru, On regular homotopy in codimension $1$, Ann. of Math. (2) 83 (1966), 257–265. MR 192507, DOI 10.2307/1970430
- C. J. Titus, A theory of normal curves and some applications, Pacific J. Math. 10 (1960), 1083–1096. MR 114189, DOI 10.2140/pjm.1960.10.1083
- C. J. Titus, Characerizations of the restriction of a holomorphic function to the boundary of a disk, J. Analyse Math. 18 (1967), 351–358. MR 212197, DOI 10.1007/BF02798053
- Charles J. Titus, The combinatorial topology of analytic functions on the boundary of a disk, Acta Math. 106 (1961), 45–64. MR 166375, DOI 10.1007/BF02545813
- Roger F. Verhey, Diffeomorphic invariants of immersed circles, Trans. Amer. Math. Soc. 163 (1972), 47–63. MR 286122, DOI 10.1090/S0002-9947-1972-0286122-4
- Hassler Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276–284. MR 1556973
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 141 (1969), 271-303
- MSC: Primary 57.20; Secondary 55.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0243542-1
- MathSciNet review: 0243542