Jacobi’s bound for the order of systems of first order differential equations
HTML articles powered by AMS MathViewer
- by Barbara A. Lando
- Trans. Amer. Math. Soc. 152 (1970), 119-135
- DOI: https://doi.org/10.1090/S0002-9947-1970-0279079-1
- PDF | Request permission
Abstract:
Let ${A_1}, \ldots ,{A_n}$ be a system of differential polynomials in the differential indeterminates ${y^{(1)}}, \ldots ,{y^{(n)}}$, and let $\mathcal {M}$ be an irreducible component of the differential variety $\mathcal {M}({A_1}, \ldots ,{A_n})$. If $\dim \mathcal {M} = 0$, there arises the question of securing an upper bound for the order of $\mathcal {M}$ in terms of the orders ${r_{ij}}$ of the polynomials ${A_i}$ in ${y^{(j)}}$. It has been conjectured that the Jacobi number \[ J = J({r_{ij}}) = \max \{\sum \limits _{i = 1}^n {{r_{i{j_i}}}} :{j_1}, \ldots ,{j_n}{\text { is a permutation of 1,}} \ldots ,n \}\] provides such a bound. In this paper $J$ is obtained as a bound for systems consisting of first order polynomials. Differential kernels are employed in securing the bound, with the theory of kernels obtained in a manner analogous to that of difference kernels as given by R. M. Cohn.References
- Claude Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, No. VI, American Mathematical Society, New York, N. Y., 1951. MR 0042164, DOI 10.1090/surv/006
- Richard M. Cohn, Difference algebra, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1965. MR 0205987
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871, DOI 10.1007/978-1-4612-9872-4
- Serge Lang, Introduction to algebraic geometry, Interscience Publishers, Inc., New York-London, 1958. MR 0100591
- J. F. Ritt, Jacobi’s problem on the order of a system of differential equations, Ann. of Math. (2) 36 (1935), no. 2, 303–312. MR 1503224, DOI 10.2307/1968572 —, Differential algebra, Amer. Math. Soc. Colloq. Publ., vol. 33, Amer. Math. Soc., Providence, R. I., 1950. MR 12, 7.
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 152 (1970), 119-135
- MSC: Primary 12.80
- DOI: https://doi.org/10.1090/S0002-9947-1970-0279079-1
- MathSciNet review: 0279079