$\sigma$-finite invariant measures on infinite product spaces
HTML articles powered by AMS MathViewer
- by David G. B. Hill
- Trans. Amer. Math. Soc. 153 (1971), 347-370
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274725-1
- PDF | Request permission
Abstract:
A necessary and sufficient condition in terms of Hellinger integrals is established for the existence of a $\sigma$-finite invariant measure on an infinite product space. Using this it is possible to construct a wide class of transformations on the unit interval which have no $\sigma$-finite invariant measure equivalent to Lebesgue measure. This class includes most of the previously known examples of such transformations.References
- Leslie K. Arnold, On $\sigma$-finite invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 85β97. MR 227362, DOI 10.1007/BF01850999
- Antoine Brunel, Sur les mesures invariantes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 300β303 (French). MR 207957, DOI 10.1007/BF00535360
- R. V. Chacon, A class of linear transformations, Proc. Amer. Math. Soc. 15 (1964), 560β564. MR 165071, DOI 10.1090/S0002-9939-1964-0165071-7
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- Paul R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, vol. 3, Mathematical Society of Japan, Tokyo, 1956. MR 0097489
- A. Ionescu Tulcea, On the category of certain classes of transformations in ergodic theory, Trans. Amer. Math. Soc. 114 (1965), 261β279. MR 179327, DOI 10.1090/S0002-9947-1965-0179327-0
- Shizuo Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214β224. MR 23331, DOI 10.2307/1969123
- Calvin C. Moore, Invariant measures on product spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp.Β 447β459. MR 0227366
- Donald S. Ornstein, On invariant measures, Bull. Amer. Math. Soc. 66 (1960), 297β300. MR 146350, DOI 10.1090/S0002-9904-1960-10478-8
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 153 (1971), 347-370
- MSC: Primary 28.75
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274725-1
- MathSciNet review: 0274725