The structure of pseudocomplemented distributive lattices. II. Congruence extension and amalgamation
HTML articles powered by AMS MathViewer
- by G. Grätzer and H. Lakser
- Trans. Amer. Math. Soc. 156 (1971), 343-358
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274359-9
- PDF | Request permission
Abstract:
This paper continues the examination of the structure of pseudocomplemented distributive lattices. First, the Congruence Extension Property is proved. This is then applied to examine properties of the equational classes ${\mathcal {B}_n}, - 1 \leqq n \leqq \omega$, which is a complete list of all the equational classes of pseudocomplemented distributive lattices (see Part I). The standard semigroups (i.e., the semigroup generated by the operators H, S, and P) are described. The Amalgamation Property is shown to hold iff $n \leqq 2$ or $n = \omega$. For $3 \leqq n < \omega ,{\mathcal {B}_n}$ does not satisfy the Amalgamation Property; the deviation is measured by a class Amal $({\mathcal {B}_n})( \subseteq {\mathcal {B}_n})$. The finite algebras in Amal $({\mathcal {B}_n})$ are determined.References
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1967. MR 0218472
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948 S. D. Comer and J. S. Johnson, The standard semigroup of operators of a variety (manuscript).
- Alan Day, Injectives in non-distributive equational classes of lattices are trivial, Arch. Math. (Basel) 21 (1970), 113–115. MR 274357, DOI 10.1007/BF01220888
- George Grätzer, Universal algebra, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. MR 0248066
- Bjarni Jónsson, Extensions of relational structures, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 146–157. MR 0202601
- Bjarni Jónsson, Sublattices of a free lattice, Canadian J. Math. 13 (1961), 256–264. MR 123493, DOI 10.4153/CJM-1961-021-0
- H. Lakser, The structure of pseudocomplemented distributive lattices. I. Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 335–342. MR 274358, DOI 10.1090/S0002-9947-1971-0274358-7
- K. B. Lee, Equational classes of distributive pseudo-complemented lattices, Canadian J. Math. 22 (1970), 881–891. MR 265240, DOI 10.4153/CJM-1970-101-4 D. Pigozzi, On some operations on classes of algebras, Notices Amer. Math. Soc. 13 (1966), 829. Abstract #639-1.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 343-358
- MSC: Primary 06.50
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274359-9
- MathSciNet review: 0274359