Spatially induced groups of automorphisms of certain von Neumann algebras
HTML articles powered by AMS MathViewer
- by Robert R. Kallman
- Trans. Amer. Math. Soc. 156 (1971), 505-515
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275180-8
- PDF | Request permission
Abstract:
This paper gives an affirmative solution, in a large number of cases, to the following problem. Let $\mathcal {R}$ be a von Neumann algebra on the Hilbert space $\mathcal {H}$, let G be a topological group, and let $a \to \varphi (a)$ be a homomorphism of G into the group of $^ \ast$-automorphisms of $\mathcal {R}$. Does there exist a strongly continuous unitary representation $a \to U(a)$ of G on $\mathcal {H}$ such that each $U(a)$ induces $\varphi (a)$?References
- N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1045, Hermann, Paris, 1958 (French). Deuxième édition revue et augmentée. MR 0173226
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- J. Dixmier, Dual et quasi-dual d’une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1962), 278–283 (French). MR 139960, DOI 10.1090/S0002-9947-1962-0139960-6 —, Les algèbres d’opérateurs dans l’espace Hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- R. V. Kadison, Isomorphisms of factors of infinite type, Canadian J. Math. 7 (1955), 322–327. MR 71746, DOI 10.4153/CJM-1955-035-3
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- George W. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949), 313–326. MR 30532
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- Robert R. Kallman, Groups of inner automorphisms of von Neumann algebras, J. Functional Analysis 7 (1971), 43–60. MR 0279596, DOI 10.1016/0022-1236(71)90043-7
- Robert R. Kallman, A remark on a paper of J. F. Aarnes, Comm. Math. Phys. 14 (1969), 13–14. MR 257275, DOI 10.1007/BF01645453
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 156 (1971), 505-515
- MSC: Primary 46.65; Secondary 81.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0275180-8
- MathSciNet review: 0275180