Spatially induced groups of automorphisms of certain von Neumann algebras
Author:
Robert R. Kallman
Journal:
Trans. Amer. Math. Soc. 156 (1971), 505-515
MSC:
Primary 46.65; Secondary 81.00
DOI:
https://doi.org/10.1090/S0002-9947-1971-0275180-8
MathSciNet review:
0275180
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper gives an affirmative solution, in a large number of cases, to the following problem. Let be a von Neumann algebra on the Hilbert space
, let G be a topological group, and let
be a homomorphism of G into the group of
-automorphisms of
. Does there exist a strongly continuous unitary representation
of G on
such that each
induces
?
- [1] N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1045, Hermann, Paris, 1958 (French). MR 0173226
- [2] Jacques Dixmier, Les 𝐶*-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- [3] J. Dixmier, Dual et quasi-dual d’une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1962), 278–283 (French). MR 139960, https://doi.org/10.1090/S0002-9947-1962-0139960-6
- [4] -, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
- [5] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
- [6] R. V. Kadison, Isomorphisms of factors of infinite type, Canadian J. Math. 7 (1955), 322–327. MR 71746, https://doi.org/10.4153/CJM-1955-035-3
- [7] George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, https://doi.org/10.1090/S0002-9947-1957-0089999-2
- [8] George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, https://doi.org/10.2307/1969423
- [9] George W. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949), 313–326. MR 30532
- [10] K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- [11] Robert R. Kallman, Groups of inner automorphisms of von Neumann algebras, J. Functional Analysis 7 (1971), 43–60. MR 0279596, https://doi.org/10.1016/0022-1236(71)90043-7
- [12] Robert R. Kallman, A remark on a paper of J. F. Aarnes, Comm. Math. Phys. 14 (1969), 13–14. MR 257275
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.65, 81.00
Retrieve articles in all journals with MSC: 46.65, 81.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1971-0275180-8
Keywords:
von Neumann algebras,
operator algebras,
groups of automorphisms,
quantum mechanics
Article copyright:
© Copyright 1971
American Mathematical Society