A maximal function characterization of the class $H^{p}$
HTML articles powered by AMS MathViewer
- by D. L. Burkholder, R. F. Gundy and M. L. Silverstein
- Trans. Amer. Math. Soc. 157 (1971), 137-153
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274767-6
- PDF | Request permission
Abstract:
Let $u$ be harmonic in the upper half-plane and $0 < p < \infty$. Then $u = \text {Re} F$ for some analytic function $F$ of the Hardy class ${H^p}$ if and only if the nontangential maximal function of $u$ is in ${L^p}$. A general integral inequality between the nontangential maximal function of $u$ and that of its conjugate function is established.References
- F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186–199. MR 65643, DOI 10.1007/BF01181342
- D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249–304. MR 440695, DOI 10.1007/BF02394573
- J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86–121. MR 64347, DOI 10.1090/S0002-9947-1954-0064347-X
- J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431–458. MR 109961
- J. L. Doob, Boundary limit theorems for a half-space, J. Math. Pures Appl. (9) 37 (1958), 385–392. MR 109962
- G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), no. 1, 81–116. MR 1555303, DOI 10.1007/BF02547518
- G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc. 81 (1956), 294–319. MR 79377, DOI 10.1090/S0002-9947-1956-0079377-3
- G. A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math. 4 (1960), 313–340. MR 123364
- H. P. McKean Jr., Stochastic integrals, Probability and Mathematical Statistics, No. 5, Academic Press, New York-London, 1969. MR 0247684
- P. Warwick Millar, Martingale integrals, Trans. Amer. Math. Soc. 133 (1968), 145–166. MR 226721, DOI 10.1090/S0002-9947-1968-0226721-8 R. E. A. C. Paley and A. Zygmund, A note on analytic functions in the unit circle, Proc. Cambridge Philos. Soc. 28 (1932), 266-272.
- Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952. 2nd ed. MR 0076084
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 157 (1971), 137-153
- MSC: Primary 30.67
- DOI: https://doi.org/10.1090/S0002-9947-1971-0274767-6
- MathSciNet review: 0274767