Asymptotic formulae for the eigenvalues of a two-parameter ordinary differential equation of the second order
HTML articles powered by AMS MathViewer
- by M. Faierman
- Trans. Amer. Math. Soc. 168 (1972), 1-52
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296390-0
- PDF | Request permission
Abstract:
We consider a two-point boundary value problem associated with an ordinary differential equation defined over the unit interval and containing the two parameters $\lambda$ and $\mu$. If for each real $\mu$ we denote the $m$th eigenvalue of our system by ${\lambda _m}(\mu )$, then it is known that ${\lambda _m}(\mu )$ is real analytic in $- \infty < \mu < \infty$. In this paper we concern ourselves with the asymptotic development of ${\lambda _m}(\mu )$ as $\mu \to \infty$, and indeed obtain such a development to an accuracy determined by the coefficients of our differential equation. With suitable conditions on the coefficients of our differential equation, the asymptotic formula for ${\lambda _m}(\mu )$ may be further developed using the methods of this paper. These results may be modified so as to apply to ${\lambda _m}(\mu )$ as $\mu \to - \infty$ if the coefficients of our differential equation are also suitably modified.References
- R. G. D. Richardson, Theorems of oscillation for two linear differential equations of the second order with two parameters, Trans. Amer. Math. Soc. 13 (1912), no. 1, 22–34. MR 1500902, DOI 10.1090/S0002-9947-1912-1500902-8
- R. G. D. Richardson, Über die notwendigen und hinreichenden Bedingungen für das Bestehen eines Kleinschen Oszillationstheorems, Math. Ann. 73 (1913), no. 2, 289–304 (German). MR 1511734, DOI 10.1007/BF01456719 M. Faierman, Boundary value problems in differential equations, Ph.D. Dissertation, University of Toronto, June 1966.
- Josef Meixner and Friedrich Wilhelm Schäfke, Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXXI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954 (German). MR 0066500
- M. J. O. Strutt, Reelle Eigenwerte verallgemeinerter Hillscher Eigenwertaufgaben 2. Ordnung, Math. Z. 49 (1944), 593–643 (German). MR 11508, DOI 10.1007/BF01174221
- Rudolph E. Langer, The asymptotic solutions of certain linear ordinary differential equations of the second order, Trans. Amer. Math. Soc. 36 (1934), no. 1, 90–106. MR 1501736, DOI 10.1090/S0002-9947-1934-1501736-5
- R. E. Langer, The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to the Stokes phenomenon, Bull. Amer. Math. Soc. 40 (1934), no. 8, 545–582. MR 1562910, DOI 10.1090/S0002-9904-1934-05913-5
- Rudolph E. Langer, The asymptotic solutions of a linear differential equation of the second order with two turning points, Trans. Amer. Math. Soc. 90 (1959), 113–142. MR 105530, DOI 10.1090/S0002-9947-1959-0105530-9
- Nicholas D. Kazarinoff, Asymptotic theory of second order differential equations with two simple turning points, Arch. Rational Mech. Anal. 2 (1958), 129–150. MR 99480, DOI 10.1007/BF00277924
- A. A. Dorodnicyn, Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 6(52), 3–96 (Russian). MR 0054137
- Robert W. McKelvey, The solutions of second order linear ordinary differential equations about a turning point of order two, Trans. Amer. Math. Soc. 79 (1955), 103–123. MR 69344, DOI 10.1090/S0002-9947-1955-0069344-7
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. III, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. Based, in part, on notes left by Harry Bateman. MR 0066496 E. T. Whittaker and G. N. Watson, Modern analysis, Cambridge Univ. Press, Cambridge, 1965. A. Erdelyi et al., Higher transcendental functions. Vol. II, McGraw-Hill, New York, 1953. MR 15, 419.
- M. Faierman, On a perturbation in a two-parameter ordinary differential equation of the second order, Canad. Math. Bull. 14 (1971), 25–33. MR 291583, DOI 10.4153/CMB-1971-005-9
- M. Faierman, Some properties of equations in integers, Canad. Math. Bull. 15 (1972), 359–362. MR 311982, DOI 10.4153/CMB-1972-065-7
- E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, 2nd ed., Clarendon Press, Oxford, 1962. MR 0176151
- Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0203188
- E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Vol. 2, Oxford, at the Clarendon Press, 1958. MR 0094551, DOI 10.1063/1.3062231
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 168 (1972), 1-52
- MSC: Primary 34B25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296390-0
- MathSciNet review: 0296390