## Asymptotic formulae for the eigenvalues of a two-parameter ordinary differential equation of the second order

HTML articles powered by AMS MathViewer

- by M. Faierman PDF
- Trans. Amer. Math. Soc.
**168**(1972), 1-52 Request permission

## Abstract:

We consider a two-point boundary value problem associated with an ordinary differential equation defined over the unit interval and containing the two parameters $\lambda$ and $\mu$. If for each real $\mu$ we denote the $m$th eigenvalue of our system by ${\lambda _m}(\mu )$, then it is known that ${\lambda _m}(\mu )$ is real analytic in $- \infty < \mu < \infty$. In this paper we concern ourselves with the asymptotic development of ${\lambda _m}(\mu )$ as $\mu \to \infty$, and indeed obtain such a development to an accuracy determined by the coefficients of our differential equation. With suitable conditions on the coefficients of our differential equation, the asymptotic formula for ${\lambda _m}(\mu )$ may be further developed using the methods of this paper. These results may be modified so as to apply to ${\lambda _m}(\mu )$ as $\mu \to - \infty$ if the coefficients of our differential equation are also suitably modified.## References

- R. G. D. Richardson,
*Theorems of oscillation for two linear differential equations of the second order with two parameters*, Trans. Amer. Math. Soc.**13**(1912), no. 1, 22–34. MR**1500902**, DOI 10.1090/S0002-9947-1912-1500902-8 - R. G. D. Richardson,
*Über die notwendigen und hinreichenden Bedingungen für das Bestehen eines Kleinschen Oszillationstheorems*, Math. Ann.**73**(1913), no. 2, 289–304 (German). MR**1511734**, DOI 10.1007/BF01456719
M. Faierman, - Josef Meixner and Friedrich Wilhelm Schäfke,
*Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme*, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXXI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954 (German). MR**0066500** - M. J. O. Strutt,
*Reelle Eigenwerte verallgemeinerter Hillscher Eigenwertaufgaben 2. Ordnung*, Math. Z.**49**(1944), 593–643 (German). MR**11508**, DOI 10.1007/BF01174221 - Rudolph E. Langer,
*The asymptotic solutions of certain linear ordinary differential equations of the second order*, Trans. Amer. Math. Soc.**36**(1934), no. 1, 90–106. MR**1501736**, DOI 10.1090/S0002-9947-1934-1501736-5 - R. E. Langer,
*The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to the Stokes phenomenon*, Bull. Amer. Math. Soc.**40**(1934), no. 8, 545–582. MR**1562910**, DOI 10.1090/S0002-9904-1934-05913-5 - Rudolph E. Langer,
*The asymptotic solutions of a linear differential equation of the second order with two turning points*, Trans. Amer. Math. Soc.**90**(1959), 113–142. MR**105530**, DOI 10.1090/S0002-9947-1959-0105530-9 - Nicholas D. Kazarinoff,
*Asymptotic theory of second order differential equations with two simple turning points*, Arch. Rational Mech. Anal.**2**(1958), 129–150. MR**99480**, DOI 10.1007/BF00277924 - A. A. Dorodnicyn,
*Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order*, Uspehi Matem. Nauk (N.S.)**7**(1952), no. 6(52), 3–96 (Russian). MR**0054137** - Robert W. McKelvey,
*The solutions of second order linear ordinary differential equations about a turning point of order two*, Trans. Amer. Math. Soc.**79**(1955), 103–123. MR**69344**, DOI 10.1090/S0002-9947-1955-0069344-7 - Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi,
*Higher transcendental functions. Vol. III*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. Based, in part, on notes left by Harry Bateman. MR**0066496**
E. T. Whittaker and G. N. Watson, - M. Faierman,
*On a perturbation in a two-parameter ordinary differential equation of the second order*, Canad. Math. Bull.**14**(1971), 25–33. MR**291583**, DOI 10.4153/CMB-1971-005-9 - M. Faierman,
*Some properties of equations in integers*, Canad. Math. Bull.**15**(1972), 359–362. MR**311982**, DOI 10.4153/CMB-1972-065-7 - E. C. Titchmarsh,
*Eigenfunction expansions associated with second-order differential equations. Part I*, 2nd ed., Clarendon Press, Oxford, 1962. MR**0176151** - Wolfgang Wasow,
*Asymptotic expansions for ordinary differential equations*, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR**0203188** - E. C. Titchmarsh,
*Eigenfunction expansions associated with second-order differential equations. Vol. 2*, Oxford, at the Clarendon Press, 1958. MR**0094551**, DOI 10.1063/1.3062231

*Boundary value problems in differential equations*, Ph.D. Dissertation, University of Toronto, June 1966.

*Modern analysis*, Cambridge Univ. Press, Cambridge, 1965. A. Erdelyi et al.,

*Higher transcendental functions*. Vol. II, McGraw-Hill, New York, 1953. MR

**15**, 419.

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**168**(1972), 1-52 - MSC: Primary 34B25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296390-0
- MathSciNet review: 0296390