Hypersurfaces of nonnegative curvature in a Hilbert space
HTML articles powered by AMS MathViewer
- by Leo Jonker
- Trans. Amer. Math. Soc. 169 (1972), 461-474
- DOI: https://doi.org/10.1090/S0002-9947-1972-0307271-8
- PDF | Request permission
Abstract:
In this paper we prove the following generalizations of known theorems about hypersurfaces in ${{\mathbf {R}}^n}$: Let $M$ be a hypersurface in a Hilbert space. (1) If on $M$ the sectional curvature $K(\sigma )$ is nonnegative for every $2$-plane section $\sigma$ and if $K(\sigma ) > 0$ for at least one $\sigma$, then $M$ is the boundary of a convex body. (2) If $K(\sigma ) = 0$ for all $\sigma$, then $M$ is a hypercylinder. The main tool in these theorems is Smale’s infinite dimensional Sard’s theorem.References
- Manfredo P. do Carmo, Positively-curved hypersurfaces of a Hilbert space, J. Differential Geometry 2 (1968), 355–362. MR 254874
- Philip Hartman and Louis Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901–920. MR 126812, DOI 10.2307/2372995
- Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43. MR 54850, DOI 10.1090/S0002-9947-1953-0054850-X
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257 J. McAlpin, Infinite dimensional manifolds and Morse theory, Thesis, Columbia University, New York, 1965.
- A. V. Pogorelov, Extensions of the theorem of Gauss on spherical representation to the case of surfaces of bounded extrinsic curvature, Dokl. Akad. Nauk SSSR (N.S.) 111 (1956), 945–947 (Russian). MR 0087147
- Richard Sacksteder, On hypersurfaces with no negative sectional curvatures, Amer. J. Math. 82 (1960), 609–630. MR 116292, DOI 10.2307/2372973
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 169 (1972), 461-474
- MSC: Primary 58B20
- DOI: https://doi.org/10.1090/S0002-9947-1972-0307271-8
- MathSciNet review: 0307271