On antiflexible algebras
HTML articles powered by AMS MathViewer
- by David J. Rodabaugh
- Trans. Amer. Math. Soc. 169 (1972), 219-235
- DOI: https://doi.org/10.1090/S0002-9947-1972-0313336-7
- PDF | Request permission
Abstract:
In this paper we begin a classification of simple and semisimple totally antiflexible algebras (finite-dimensional) over splitting fields of char. $\ne 2,3$. For such an algebra $A$, let $P$ be the largest associative ideal in ${A^ + }$ and let ${N^ + }$ be the radical of $P$. We determine all simple and semisimple totally antiflexible algebras in which $N \cdot N = 0$. Defining $A$ to be of type $(m,n)$ if ${N^ + }$ is nilpotent of class $m$ with $\dim A = n$, we then characterize all simple nodal totally anti-flexible algebras (over fields of char. $\ne 2,3$) of types $(n,n)$ and $(n - 1,n)$ and give preliminary results for certain other types.References
- C. T. Anderson and D. L. Outcalt, On simple anti-flexible rings, J. Algebra 10 (1968), 310–320. MR 230777, DOI 10.1016/0021-8693(68)90082-3
- Daniel T. Finkbeiner II, Introduction to matrices and linear transformations, 2nd ed., W. H. Freeman and Co., San Francisco, Calif.-London, 1966. MR 0193094
- Frank Kosier, On a class of nonflexible algebras, Trans. Amer. Math. Soc. 102 (1962), 299–318. MR 133353, DOI 10.1090/S0002-9947-1962-0133353-3
- D. Rodabaugh, A generalization of the flexible flaw, Trans. Amer. Math. Soc. 114 (1965), 468–487. MR 184981, DOI 10.1090/S0002-9947-1965-0184981-3
- D. J. Rodabaugh, Some new results on simple algebras, Pacific J. Math. 17 (1966), 311–317. MR 212059, DOI 10.2140/pjm.1966.17.311
- D. J. Rodabaugh, Antiflexible algebras which are not power-associative, Proc. Amer. Math. Soc. 17 (1966), 237–239. MR 186710, DOI 10.1090/S0002-9939-1966-0186710-2
- D. J. Rodabaugh, On semisimple antiflexible algebras, Portugal. Math. 26 (1967), 261–271. MR 257168
- D. A. Suprunenko and R. I. Tyškevič, Perestanovochnye matritsy, “Nauka i Tekhnika”, Minsk, 1966 (Russian). MR 0201472
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 169 (1972), 219-235
- MSC: Primary 17A30
- DOI: https://doi.org/10.1090/S0002-9947-1972-0313336-7
- MathSciNet review: 0313336