The number of roots in a simply-connected $H$-manifold
HTML articles powered by AMS MathViewer
- by Robert F. Brown and Ronald J. Stern
- Trans. Amer. Math. Soc. 170 (1972), 499-505
- DOI: https://doi.org/10.1090/S0002-9947-1972-0307227-5
- PDF | Request permission
Abstract:
An $H$-manifold is a triple $(M,m,e)$ where $M$ is a compact connected triangulable manifold without boundary, $e \in M$, and $m:M \times M \to M$ is a map such that $m(x,e) = m(e,x) = x$ for all $x \in M$. Define ${m_1}:M \to M$ to be the identity map and, for $k \geqslant 2$, define ${m_k}:M \to M$ by ${m_k}(x) = m(x,{m_{k - 1}}(x))$. It is proven that if $(M,m,e)$ is an $H$-manifold, then $M$ is simply-connected if and only if given $k \geqslant 1$ there exists a multiplication $mβ$ on $M$ homotopic to $m$ such that ${mβ_j}(x) = e$ implies $x = e$ for all $j \leqslant k$.References
- Robin B. S. Brooks, On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy, Pacific J. Math. 40 (1972), 45β52. MR 341470
- Robert F. Brown, Divisible $H$-spaces, Proc. Amer. Math. Soc. 26 (1970), 185β189. MR 261594, DOI 10.1090/S0002-9939-1970-0261594-3
- Robert F. Brown, The Lefschetz fixed point theorem, Scott, Foresman & Co., Glenview, Ill.-London, 1971. MR 0283793
- Robert F. Brown and Alfred W. Hales, Primitive roots of unity in $H$-manifolds, Amer. J. Math. 92 (1970), 612β618. MR 278301, DOI 10.2307/2373363
- Heinz Hopf, Γber den Rang geschlossener Liescher Gruppen, Comment. Math. Helv. 13 (1940), 119β143 (German). MR 4631, DOI 10.1007/BF01378057
- Helga Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21β39 (German). MR 73172, DOI 10.1515/crll.1955.194.21
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 170 (1972), 499-505
- MSC: Primary 55D45; Secondary 57A15, 57C15
- DOI: https://doi.org/10.1090/S0002-9947-1972-0307227-5
- MathSciNet review: 0307227