Solid $k$-varieties and Henselian fields
HTML articles powered by AMS MathViewer
- by Gustave Efroymson
- Trans. Amer. Math. Soc. 170 (1972), 187-195
- DOI: https://doi.org/10.1090/S0002-9947-1972-0318159-0
- PDF | Request permission
Abstract:
Let $k$ be a field with a nontrivial absolute value. Define property $( \ast )$ for $k$: Given any polynomial $f(x)$ in $k[x]$ with a simple root $\alpha$ in $k$; then if $g(x)$ is a polynomial near enough to $f(x),g(x)$ has a simple root $\beta$ near $\alpha$. A characterization of fields with property $( \ast )$ is given. If $Y$ is an affine $k$-variety, $Y \subset {\bar k^{(n)}}$, define ${Y_k} = Y \cap {k^{(n)}}$. Define $Y$ to be solid if $I(Y) = I({Y_k})$ in $k[{x_1}, \cdots ,{x_n}]$. If $\pi :Y \to {\bar k^d}$ is a projection induced by Noether normalization, and if $k$ has property $( \ast )$, then $Y$ is a solid $k$-variety if and only if $\pi ({Y_k})$ contains a sphere in ${k^d}$. Using this characterization of solid $k$-varieties and Bertiniâs theorem, a dimension theorem is proven.References
- James Ax, Solving diophantine problems modulo every prime, Ann. of Math. (2) 85 (1967), 161â183. MR 209224, DOI 10.2307/1970438
- N. Bourbaki, ĂlĂ©ments de mathĂ©matique. Fasc. XXX. AlgĂšbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, ActualitĂ©s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1308, Hermann, Paris, 1964 (French). MR 0194450 D. Dubois and G. Efroymson, A dimension theorem for real primes (submitted). A. Grothendieck with the collaboration of J. DieudonnĂ©, ElĂ©ments de gĂ©omĂ©trie algĂ©brique, Inst. Hautes Ătudes Sci., Bures sur Yvette, Chapter 5 (to appear). A. Grothendieck, Local properties of morphisms, A course given at Harvard University, Cambridge, Mass., 1963.
- Moshe Jarden, Rational points on algebraic varieties over large number fields, Bull. Amer. Math. Soc. 75 (1969), 603â606. MR 240102, DOI 10.1090/S0002-9904-1969-12257-3
- Serge Lang, Algebraic numbers, Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto-London, 1964. MR 0160763
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Masayoshi Nagata, On the theory of Henselian rings, Nagoya Math. J. 5 (1953), 45â57. MR 51821
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 170 (1972), 187-195
- MSC: Primary 14G20; Secondary 13J15
- DOI: https://doi.org/10.1090/S0002-9947-1972-0318159-0
- MathSciNet review: 0318159