Projective moduli and maximal spectra of certain quotient rings
HTML articles powered by AMS MathViewer
- by Aron Simis PDF
- Trans. Amer. Math. Soc. 170 (1972), 125-136 Request permission
Abstract:
The projective modulus of a (commutative) ring is defined and a class of quotient rings is given for which the projective moduli are arbitrarily smaller than the dimension of the maximal spectra. Families of prime ideals of Towber and maximal type are introduced herein.References
- Shreeram Shankar Abhyankar, Local analytic geometry, Pure and Applied Mathematics, Vol. XIV, Academic Press, New York-London, 1964. MR 0175897
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- N. Bourbaki, Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1261, Hermann, Paris, 1958 (French). MR 0098114 —, Eléments de mathématique. Fasc. XXX. Algèbre commutative. Chap. 5: Entiers, Actualités Sci. Indust., no. 1308, Hermann, Paris, 1964. MR 33 #2660. A. Grothendieck, Eléments de géométrie algébrique. I. Le language des schémas, Inst. Hautes Études Sci. Publ. Math. No. 4 (1960). MR 36 #177a.
- David Lissner and Nadine Moore, Projective modules over certain rings of quotients of affine rings, J. Algebra 15 (1970), 72–80. MR 257061, DOI 10.1016/0021-8693(70)90086-4
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- Jack Ohm and R. L. Pendleton, Rings with noetherian spectrum, Duke Math. J. 35 (1968), 631–639. MR 229627 J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, fasc. 2, Exposé 23, Secrétariat mathématique, Paris, 1958, MR 31 #1277.
- Aron Simis, Projective modules of certain rings and the existence of cyclic basis, J. Algebra 18 (1971), 468–476. MR 276213, DOI 10.1016/0021-8693(71)90077-9
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 170 (1972), 125-136
- MSC: Primary 13C10
- DOI: https://doi.org/10.1090/S0002-9947-1972-0319972-6
- MathSciNet review: 0319972