Inductive limits of finite dimensional $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Ola Bratteli PDF
- Trans. Amer. Math. Soc. 171 (1972), 195-234 Request permission
Abstract:
Inductive limits of ascending sequences of finite dimensional ${C^ \ast }$-algebras are studied. The ideals of such algebras are classified, and a necessary and sufficient condition for isomorphism of two such algebras is obtained. The results of Powers concerning factor states and representations of UHF-algebras are generalized to this case. A study of the current algebra of the canonical anticommutation relations is then being made.References
- Jacques Dixmier, Sur les $C^{\ast }$-algèbres, Bull. Soc. Math. France 88 (1960), 95–112 (French). MR 121674, DOI 10.24033/bsmf.1545 —, Les algèbres d’opérateurs dans l’espace Hilbertien, Gauthier-Villars, Paris, 1969.
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- J. Dixmier, On some $C^{\ast }$-algebras considered by Glimm, J. Functional Analysis 1 (1967), 182–203. MR 0213886, DOI 10.1016/0022-1236(67)90031-6
- Sergio Doplicher, Rudolf Haag, and John E. Roberts, Fields, observables and gauge transformations. I, Comm. Math. Phys. 13 (1969), 1–23. MR 258394, DOI 10.1007/BF01645267
- James G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340. MR 112057, DOI 10.1090/S0002-9947-1960-0112057-5
- James Glimm, A Stone-Weierstrass theorem for $C^{\ast }$-algebras, Ann. of Math. (2) 72 (1960), 216–244. MR 116210, DOI 10.2307/1970133
- James G. Glimm and Richard V. Kadison, Unitary operators in $C^{\ast }$-algebras, Pacific J. Math. 10 (1960), 547–556. MR 115104, DOI 10.2140/pjm.1960.10.547
- Rudolf Haag and Daniel Kastler, An algebraic approach to quantum field theory, J. Mathematical Phys. 5 (1964), 848–861. MR 165864, DOI 10.1063/1.1704187
- R. Haag, R. V. Kadison, and D. Kastler, Nets of $C^{\ast }$-algebras and classification of states, Comm. Math. Phys. 16 (1970), 81–104. MR 269224, DOI 10.1007/BF01646615 R. T. Powers, Representations of the canonical anticommutation relations, Thesis, Princeton University, Princeton, N. J., 1967.
- Robert T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138–171. MR 218905, DOI 10.2307/1970364
- I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221–265. MR 45133, DOI 10.1215/S0012-7094-51-01817-0
- Zirô Takeda, Inductive limit and infinite direct product of operator algebras, Tohoku Math. J. (2) 7 (1955), 67–86. MR 74800, DOI 10.2748/tmj/1178245105
- Kôsaku Yosida, Functional analysis, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York, Inc., New York, 1968. MR 0239384, DOI 10.1007/978-3-662-11791-0
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 171 (1972), 195-234
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0312282-2
- MathSciNet review: 0312282