A Laurent expansion for solutions to elliptic equations
HTML articles powered by AMS MathViewer
- by Reese Harvey and John C. Polking
- Trans. Amer. Math. Soc. 180 (1973), 407-413
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320494-8
- PDF | Request permission
Abstract:
Let $P(\xi )$ be a homogeneous elliptic polynomial of degree $m$. Let $E$ be a fundamental solution for the partial differential operator $P(D)$. Suppose $\Omega$ is a neighborhood of 0 in ${{\mathbf {R}}^n}$. Suppose $f \in {C^\infty }(\Omega \sim \{ 0\} )$ satisfies $P(D)f = 0$ in $\Omega \sim \{ 0\}$. It is shown that there is a differential operator $H(D)$ (perhaps of infinite order) and a function $g \in {C^\infty }(\Omega )$ satisfying $P(D)g = 0$ in $\Omega$, such that $f = H(D)E + g$ in $\Omega \sim \{ 0\}$. This analog of the Laurent expansion for $f$ is made unique by requiring that the Cauchy principal value of $H(D)E$ be equal to $H(D)E$.References
- Alberto-P. Calderón, Integrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbolicas, Cursos y Seminarios de Matemática, Fasc. 3, Universidad de Buenos Aires, Buenos Aires, 1960 (Spanish). MR 0123834
- Fritz John, Plane waves and spherical means applied to partial differential equations, Interscience Publishers, New York-London, 1955. MR 0075429
- Mikio Sato, Theory of hyperfunctions. II, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 387–437 (1960). MR 132392
- Laurent Schwartz, Courant associé à une forme différentielle méromorphe sur une variété analytique complexe, Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, Centre National de la Recherche Scientifique, Paris, 1953, pp. 185–195 (French). MR 0066014 —, Théorie des distributions, Publ. Inst. Math. Univ. Strasbourg, no. 9-10, Hermann, Paris, 1966. MR 35 #730.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 407-413
- MSC: Primary 35C10; Secondary 35J30
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320494-8
- MathSciNet review: 0320494