Hermitian vector bundles and value distribution for Schubert cycles
HTML articles powered by AMS MathViewer
- by Michael J. Cowen
- Trans. Amer. Math. Soc. 180 (1973), 189-228
- DOI: https://doi.org/10.1090/S0002-9947-1973-0333252-5
- PDF | Request permission
Abstract:
R. Bott and S. S. Chern used the theory of characteristic differential forms of a holomorphic hermitian vector bundle to study the distribution of zeroes of a holomorphic section. In this paper their methods are extended to study how often a holomorphic mapping into a Grassmann manifold hits Schubert cycles of fixed type.References
- Thomas Bloom and Miguel Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275–296. MR 248349, DOI 10.1007/BF01425536
- Raoul Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71–112. MR 185607, DOI 10.1007/BF02391818
- S. S. Chern, Complex manifolds without potential theory, Van Nostrand Mathematical Studies, No. 15, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225346
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Harley Flanders, Differential forms with applications to the physical sciences, Academic Press, New York-London, 1963. MR 0162198
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 0258070
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- John J. Hirschfelder, The first main theorem of value distribution in several variables, Invent. Math. 8 (1969), 1–33. MR 245840, DOI 10.1007/BF01418868
- W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. II. Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties, Cambridge, at the University Press, 1952. MR 0048065
- James R. King, The currents defined by analytic varieties, Acta Math. 127 (1971), no. 3-4, 185–220. MR 393550, DOI 10.1007/BF02392053
- Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239–262 (French). MR 95967, DOI 10.24033/bsmf.1488
- Wilhelm Stoll, Value distribution of holomorphic maps into compact complex manifolds. , Lecture Notes in Mathematics, Vol. 135, Springer-Verlag, Berlin-New York, 1970. MR 0267138, DOI 10.1007/BFb0059118
- Gabriel Stolzenberg, Volumes, limits, and extensions of analytic varieties, Lecture Notes in Mathematics, No. 19, Springer-Verlag, Berlin-New York, 1966. MR 0206337, DOI 10.1007/BFb0097736
- H. Wu, Remarks on the first main theorem in equidistribution theory. I, J. Differential Geometry 2 (1968), 197–202. MR 276500
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 189-228
- MSC: Primary 32H25
- DOI: https://doi.org/10.1090/S0002-9947-1973-0333252-5
- MathSciNet review: 0333252